
PREV UP NEXT

Xschem slides [PDF version]

[Video] Xschem FSiC2022 presentation

All in one pdf documentation (repo.hu, github, sourceforge version with
autoconfig)

INDEX

What is XSCHEM1.
Install XSCHEM2.
Run XSCHEM3.
XSCHEM elements4.
Symbols5.
XSCHEM properties6.
Component instantiation7.
Symbol properties syntax8.
Component properties syntax9.
Creating a circuit schematic10.
Creating symbols11.
Component parameters12.
More info on creating a parametric subcircuit13.
Editor commands14.
Netlisting15.
Net Probes16.
Simulation17.
Viewing simulation data with XSCHEM18.
Developer Info, XSCHEM file format specification19.
XSCHEM remote interface specification20.

TUTORIALS

Step by step instructions: Install XSCHEM•
Run a simulation with XSCHEM•
Instance based selection of symbol implementation•
Symbol and Schematic generators (aka Pcells)•
Create a symbol and use an existing subcircuit netlist•
Create a symbol with XSCHEM•
Manage XSCHEM design libraries / symbol librares•
Use bus / vector notation for signal bundles / arrays of instances•
Backannotation of Ngspice simulation data into xschem•
Use symgen.awk to create symbols from 'djboxsym' compatible text files•
Translate GEDA gschem/lepton-schematic schematics and symbols to xschem.•

1

https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/xschem_fsic2022_presentation.pdf
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/xschem_fsic2022_presentation.mp4
https://xschem.sourceforge.io/stefan/xschem_man/xschem_man.pdf
https://xschem.sourceforge.io/stefan/xschem_man/xschem_man.pdf

Xschem Google-Skywater 130n (Sky130) process integration•
[Video] Install Xschem, Xschem_sky130, skywater-pdk and ngspice: step by step instructions•
[Video] Second version, Install Xschem and open_pdks for skywater 130 design•
[Video] Editing commands and simulation•
[Video] Work on different projects in one running Xschem instance•
[Video] Editing component attributes•
[Video] Copying objects across xschem windows•
[Video] Symbols with inherited connections•
[Video] Search / replace function•
[Video] Visualize differences between two schematics with xschem•
[Video] How to stretch objects•
[Video] Parameters in subcircuits•
[Video] Create pins from net labels, fix grid align issues, wires•
[Video] Link documentation to components/symbols•
[Video] Use rawtovcd to show ngspice waveforms in gtkwave•
[Video] Run a Verilog simulation with XSCHEM and icarus Verilog•
[Video] See logic propagation of nets live in xschem without using a backend simulator•
[Video] View Ngspice/Xyce simulation data inside XSCHEM•
[Video] Live annotation of simulation values into the schematic•
[Video] Setting up a Xyce simulation, viewing results and doing math on graphs•
[Video] Probe xschem nets into the GAW waveform viewer•
[Video] Probe xschem nets into the BESPICE waveform viewer•
[Video] Creating a symbol•
[Video] Instantiating schematics instead of symbols (LCC, Local Custom Cell)•
[Video] Using more schematic views of a symbol to do simulation at different abstraction levels•
[Video] Let components display the name of the net attached to their pins•
[Video] New editing commands on shapes, polygons and bezier curves.•
[Video] New user friendly 'click and drag' interface•
[Video] Simulate the same circuit with different simulators, SPICE, Verilog, VHDL•
[Video] Ngspice / Verilog-A cosimulation•

FAQ

Common questions about XSCHEM•
Graphic performance considerations•

 FAQ

2

https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/install_xschem_sky130_and_ngspice.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/install_xschem_and_open_pdks.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/editing_and_sim.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/multiple_projects.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/edit_attributes.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/copy_from_window_to_window.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/inherited_connections.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/search_replace.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/xschem_diff.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/stretch.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/parametric_subckts.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/wires_pins_grid.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/launcher.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/rawtovcd.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/verilog.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/xschem_embedded_simulation.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/xschem_graphs.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/live_annotation_with_b_cursor.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/expr_in_graphs.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/probe_to_gaw.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/probe_to_bespice.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/create_symbol.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/LCC.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/multiple_schematics_bound_to_symbol.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/net_name_attribute.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/bezier_shapes.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/click_and_drag.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/multisim.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/verilog_a.mp4

PREV UP NEXT

WHAT IS XSCHEM

Electronic systems today tend to be generally very complex and a lot of work has to be done from circuit conception to
the validation of the final product. One of the milestones of this process is the creation of the circuit schematic of the
electronic system.

The circuit diagram has to be drawn using an interactive computer program called schematic editor , this is usually a very
first step in the design cycle of the product. Once the schematic has been drawn on the computer, the circuit connectivity
and device list (netlist) can be generated and sent to a circuit simulator (spice, hspice, eldo, just to mention some) for
performing circuit simulation.

So, as you probably guessed, XSCHEM is a schematic capture program that allows to interactively enter an electronic
circuit using a graphical and easy to use interface. When the schematic has been created a circuit netlist can be generated
for simulation. Currently XSCHEM supports four netlist formats:

SPICE netlist1.
VHDL netlist2.
VERILOG netlist3.
tEDAx netlist for Printed board editing software like pcb-rnd.4.

XSCHEM was initially created for VLSI design, not for printed circuit board schematics (PCB), however the recently
added tEDAx netlist format is used to export XSCHEM schematics to pcb-rnd or other tEDAx-aware PCB editors. The
roadmap for XSCHEM development will focus more in the future to build a tight integration with pcb-rnd printed board
editor, joining the CoralEDA ecosystem philosophy.
XSCHEM initial design goal was to handle Integrated Circuit (IC) design and generate netlists for Very Large Scale
digital, analog or mixed mode simulations. While the user interface looks very simple, the netlisting and rendering engine
in XSCHEM are designed from the ground-up to handle in the most efficient way very large designs. Also the user
interaction has no bells and whistles but is the result of doing actual work on big projects in the most efficient way. This is
why for example most of the work is done with bind keys, instead of using context menus or elaborate graphical actions,
simply these things will slow your work if most of your schematics have 5-8 levels of hierarchy and 1000K+ transistors.
Here under a picture of a VLSI SOC (System On Chip) imported in XSCHEM. As you can see the ability of XSCHEM is
to handle really big designs. This has been the primary goal during the whole development of the program. The sample
design showed has more than 10 levels of hierarchy and really big schematics. For each hierarchy level one component is
expanded until the leaf of the tree is reached. :-)

3

http://repo.hu/projects/pcb-rnd
http://repo.hu/projects/pcb-rnd
http://repo.hu/projects/coraleda

 WHAT IS XSCHEM

4

It is also worth to point out that XSCHEM has nothing to do with GSCHEM, the name similarity is just coincidence.
GSCHEM is another powerful Schematic Capture program, primarily focused on board level (PCB) system design. See
gEDA for more information.

 WHAT IS XSCHEM

5

http://wiki.geda-project.org/geda:gaf
http://geda-project.org/

PREV UP NEXT

DOWNLOAD XSCHEM

You should download the xschem sources from one of these repositories:

From repo.hu with subversion:•

 svn checkout svn://repo.hu/xschem/trunk xschem-src

From sourceforge.net with subversion:•

 svn checkout https://svn.code.sf.net/p/xschem/code/ xschem-src

From github.com with git:•

 git clone https://github.com/StefanSchippers/xschem.git xschem-src

Attention

If you have a binary xschem package installed on the system you should remove it. Packaged xschem versions are too old
and they conflict with the one you are building from source. To remove: (this command is for Debian/Ubuntu, use similar
commands for other distributions)
sudo apt-get purge xschem

INSTALL XSCHEM

in order to install the program run the following command:

 user:~$ cd xschem-src; ./configure

This will make all the necessary checks for required libraries and system tools.

for Debian and Ubuntu systems these are the packages you should check to be installed. Tck/Tk versions may vary on
different systems, 8.4, 8.5, 8.6 versions are all good.

 LIBRARIES DEVELOPMENT FILES

 libx11-6 libx11-dev
 libxrender1 libxrender-dev

6

 libxcb1 libx11-xcb-dev
 libcairo2 libcairo2-dev
 tcl8.6 tcl8.6-dev
 tk8.6 tk8.6-dev
 flex bison
 libxpm4 libxpm-dev
 libjpeg62-turbo or libjpeg libjpeg-dev

terminal program and editor used by default by xschem:
alternative programs can be specified in xschemrc by
setting tcl variables 'terminal' and 'editor', respectively.
 xterm vim-gtk3
tools that should be available on all systems by default:
 gawk or mawk
Suggested (not mandatory for using xschem) packages:
 tcl-tclreadline

If configure ends with no errors we are ready to compile:

 user:~$ make

If we want to install xschem and its required files (execute as root if you plan to do a system-wide installation, for
example in /usr/local):

 user:~$ sudo make install

This will install all the runtime needed files into the locations previously configured (can be found in Makefile.conf). To
change the default installation prefix (/usr/local), please replace the configure step shown above with:

 ./configure --prefix=new/prefix/path

For testing purposes xschem can be run and invoked from the build directory xschem-<version>/src/ without
installation.

 user:~$ cd xschem-2.7.0/src && ./xschem

When xschem is running, type puts $XSCHEM_LIBRARY_PATH in the xschem tcl prompt to know the library search
path.
Type puts $XSCHEM_SHAREDIR to see the installation path.

Sample user design libraries are provided and installed systemwide under
${XSCHEM_SHAREDIR/xschem_library/. The XSCHEM_START_WINDOW specifies a schematic to preload at
startup, to avoid absolute paths use a path that is relative to one of the XSCHEM_LIBRARY_PATH directories. XSCHEM
will figure out the actual location. You may comment the definition if you don't want any schematic on startup.

If you need to override system settings, create a ~/.xschem/xschemrc. The easiest way is to copy the system
installed version from ${prefix}/share/xschem/xschemrc and then make the necessary changes.

 user:$ mkdir ~/.xschem

 INSTALL XSCHEM

7

 user:$ cp <install root>/share/xschem/xschemrc ~/.xschem/xschemrc

When xschem is run the first time it will do the above operations, create a ${HOME}/.xschem/ directory and place a
xschemrc into it.

- Build xschem with a custom tcl-tk installation

If you need to build xschem against a tcl-tk installation located in a non-standard place you must provide additional
options to the .configure script.
Suppose there is a tcl-tk version 8.4 installation in /home/schippes/x/tcltk then the following commands must
be given before runninkg make and make install:

export LD_LIBRARY_PATH=/home/schippes/x/tcltk/lib

./configure \
--prefix=/home/schippes \
/arg/tcl-version=8.4 \
/arg/tk-version=8.4 \
--prefix/libs/script/tcl=/home/schippes/x/tcltk \
--prefix/libs/script/tk=/home/schippes/x/tcltk \
--debug

This is the command I run to build and test xschem with tcl-tk 8.4 which was released 20 years ago.

-Technical information - Detailed XSCHEM startup sequence

Information here under is not meant to be executed by the user

Source system-wide xschemrc if existing: XSCHEM_SHAREDIR/xschemrc. This file is by default all
commented so it does nothing. See below how XSCHEM_SHAREDIR path is generated.

1.

If --rcfile=<rcfile> is given then source the specified rcfile. Do not load any other rcfile.2.
If ../src/xchem.tcl with respect to current dir is existing and ../xschem_library is also existing
then we are starting from a build directory, set XSCHEM_SHAREDIR to <current dir> and also set
XSCHEM_LIBRARY_PATH to ../xschem_library/devices.

3.

Else use compile-time (generated from configure script) provided XSCHEM_SHAREDIR. (default is
/usr/local/share/xschem).

4.

If in current dir there is a xschemrc file source it.5.
Else if there is a USER_CONF_DIR/xschemrc file source it. XSCHEM_SHAREDIR and USER_CONF_DIR
are preprocessor macros passed at compile time by the configure script. The first one will be overridden only if
executing from a build directory, see item 3.

6.

If XSCHEM_SHAREDIR not defined --> error and quit.7.
Start loading user provided schematic file or start with empty window (or filename specified in
XSCHEM_START_WINDOW tcl variable).

8.

 - Build xschem with a custom tcl-tk installation

8

 -Technical information - Detailed XSCHEM startup sequence

9

PREV UP NEXT

RUN XSCHEM

Assuming xschem is installed in one of the ${PATH} search paths just execute:

user:~$ xschem

the xschem window should appear. If xschem is not in the search path then specify its full pathname.

if a filename is given that file will be loaded on startup:

user:~$ xschem .../xschem_library/examples/0_examples_top.sch

10

XSCHEM COMMAND LINE OPTIONS

xschem accepts short (-h) or long (--help) options:

usage: xschem [options] [schematic | symbol]
Options:
 -h --help Print this help.
 -b --detach Detach Xschem from console (no output and no input from console)
 -n --netlist Do a netlist of the given schematic cell.
 -v --version Print version information and exit.
 -V --vhdl Set netlist type to VHDL.
 -S --simulate Run a simulation of the current schematic file
 (spice/Verilog/VHDL, depending on the netlist
 type chosen).
 -w --verilog Set netlist type to Verilog.
 --tcl <tcl_cmd> Execute specified tcl instructions before any other action,
 after sourcing xschemrc, this can be used to change xschemrc variables.
 --preinit <tcl_cmd> Execute specified tcl instructions before any other action,
 and before loading xschemrc.
 --script <file> Execute specified tcl file as a command script (perhaps with xschem commands).
 --command <tcl_cmd> Execute specified tcl commands after completing startup.
 --diff <file> Show differences with given file.
 --tcp_port <number> Listen to specified tcp port for client connections. (number >=1024).
 -i --no_rcload Do not load any xschemrc file.

XSCHEM COMMAND LINE OPTIONS

11

 --netlist_path <path>
 -o <path> Set output path for netlist.
 --netlist_filename <file>
 -N <file> Set name (only name or full path) of top level netlist file.
 -t --tedax Set netlist type to tEDAx.
 -s --spice Set netlist type to SPICE.
 -y --symbol Set netlist type to SYMBOL (used when drawing symbols)
 -x --no_x Don't use X (only command mode).
 -z --rainbow Use a rainbow-looking layer color table.
 -W --waves Show simulation waveforms.
 -f --flat_netlist Set flat netlist (for spice format only).
 -r --no_readline Start without the tclreadline package, this is necessary
 --pipe if stdin and stdout are to be redirected. This also prevents xschem
 from closing stdin / stdout / stderr even if invoked from pipes.
 -c --color_ps Set color postscript.
 --plotfile <file> Use <file> as output for plot (png, svg, ps).
 --rcfile <file> Use <file> as a rc file for startup instead of the
 default xschemrc.
 -p --postscript
 --pdf Export pdf schematic.
 --png Export png schematic.
 --svg Export svg schematic.
 -q --quit Quit after doing things (no interactive mode).
 -l <file>
 --log <file> Set a log file.
 -d <n>
 --debug <n> Set debug level: 1, 2, 3,.. C program debug.
 -1, -2, -3... TCL frontend debug.

xschem: interactive schematic capture program

Example: xschem counter.sch
the schematic file `counter.sch' will be loaded.

CREATING A NEW SCHEMATIC

To create a new schematic run xschem and give a non existent filename:
xschem aaa.sch

 CREATING A NEW SCHEMATIC

12

You can save the schematic by pressing '<ctrl shift>s' or by using the menu File - Save As:

 CREATING A NEW SCHEMATIC

13

If no filename change is needed you can just use File - Save. Now a new empty schematic file is created. You can
use this test.sch for testing while reading the manual. After exiting XSCHEM you can load directly this schematic
with the following commands, they are all equivalent.

xschem /home/schippes/x/test.sch
or ...
xschem ${HOME}/schippes/x/test

you can load test.sch when xschem is running by using the load command '<ctrl>o' key or by menu Open
command. Use the file selector dialog to locate the schematic and load it in. When loading a new file XSCHEM asks to
save the currently loaded schematic if it has been modified.

 CREATING A NEW SCHEMATIC

14

PREV UP NEXT

XSCHEM ELEMENTS

WIRES

Wires in XSCHEM are the equivalent of copper traces in printed circuit boards or electrical conductors. Wires are drawn
as lines but the electrical connectivity graph is built by XSCHEM. To draw a wire segment point the mouse somewhere in
the drawing window and press the 'w' key. A rubber wire is shown with one end following the mouse. Clicking the left
mouse button finishes the placement. The following picture shows a set of connected wires. There are many wire
segments but only 3 electrical nodes. XSCHEM recognizes connection of wires and uses this information to build up the
circuit connectivity. All wires are drawn on the 'wire' layer. One electrical node in the picture below has been highlighted
in red (this is a XSCHEM function we will cover later on).

LINES

Lines are just segments that are used for drawing. Lines do not have any electrical meaning, in fact when building the
circuit netlist, lines are completely ignored. XSCHEM uses different layers to draw lines. Each layer has its own color,
allowing to draw with different colors. Lines are placed like wires, but using the 'l' key. The 'Layers' menu allows to
select various different layers (colors) for the line.

15

RECTANGLES

Rectangles like Lines are drawable on multiple layers, and also do not carry any electrical information. A specific 'PIN'
layer is used to make pins that are used to interconnect wires and components. Different fill styles (or no fill) can be
defined for each layer. Rectangles are placed with the 'r' bindkey

 LINES

16

POLYGONS

Polygons are paths that can be drawn on any layer. Placements begins with the 'p' key and continues as long as the user
clicks points on the drawing area. Placement ends when:

the last point is coincident to the first point.•
or by clicking the right mouse button, for an open polygon.•
or by hitting the Return key, for a closed polygon (this can be done also by clicking the last point coincident to
the first polygon point).

•

A fill=true attribute may be given to have the shape filled with the layer fill style.

 RECTANGLES

17

CIRCLES / ARCS

Arcs may be placed by hitting the Shift-C key. First click the start point, then the end point. Moving the mouse will
show the arc passing thru the 2 points and the mouse waypoint. Clicking will place the arc. Arcs may be modified after
creation by selecting in stretch mode (Ctrl-Button1-drag) one of the arc ends or the arc center:
- (end point selected in stretch mode): by starting a move (m) operation and moving the mouse the arc sweep may be
changed.
- (start point selected in stretch mode):by starting a move (m) operation and moving the mouse the start arc angle may be
changed.
- (arch center selected in stretch mode): by starting a move (m) operation and moving the mouse the arc radius may be
changed.
If a circle is needed then use the Ctrl-Shift-C key combination.
A fill=true attribute may be given to have the shape filled with the layer fill style.

 POLYGONS

18

TEXT

Text can be placed with the 't' bindkey. A dialog box appears where the user inputs the text and text size.

The layer property can be used to draw text on a different layer, for example, setting layer=6 will draw on cyan
color. A font property is defined to change the default font. A hcenter=true attribute may be set to center text in the
reading direction, while vcenter=true centers text in the perpendicular (to reading) direction. the 2 attributes may be
set both to get full centered text box.
A weight=bold attribute may be given for bold text, while a slant=italic or slant=oblique may specify
italic or slanted text.
A hide=true will make the specified text invisible unless the View->Show hidden texts option is enabled. If
hide=instance is given the text will be invisible in placed instances of the symbol, but visible when descending into
the symbol.

 TEXT

19

You will learn in the xschem properties chapter how to set, edit and change object properties.

 TEXT

20

SYMBOLS

Symbols are graphical elements that represent electrical components. A symbol represents an electronic device, like for
example a resistor, a bipolar transistor, an amplifier etc. As you can see graphically symbols are built with lines,
rectangles, polygons and texts, the graphical primitives shown before. In the picture below some components are placed
in a schematic window. Components are instances of symbols. For example you see three placements of the 'npn' bipolar
transistor symbol. Like in C++, where objects are instances of classes, here components are instances of symbols.

 SYMBOLS

21

Symbols (like schematic drawings) are stored in xschem libraries. For XSCHEM a library is just a directory placed under
the XSCHEM_LIBRARY_PATH directory, see the installation slide. A symbol is stored in a .sym file.

user:~$ cd .../share/xschem/xschem_library/
user:xschem_library$ ls
devices
user:xschem_library$ cd devices
user:devices$ ls *.sym
ammeter.sym generic.sym noconn.sym switch_hsp.sym
arch_declarations.sym gnd.sym npn.sym switch.sym
architecture.sym ind.sym opin.sym title.sym
assign.sym iopin.sym package_not_shown.sym tline_hsp.sym
attributes.sym ipin.sym package.sym use.sym
bus_connect_not_shown.sym isource_arith.sym param_agauss.sym vccs.sym
bus_connect.sym isource_pwl.sym param.sym vcr.sym
capa.sym isource.sym parax_cap.sym vcvs.sym
cccs.sym k.sym pmos3.sym vdd.sym
ccvs.sym lab_pin.sym pmos4.sym verilog_delay.sym
connect.sym lab_wire.sym pmosnat.sym verilog_timescale.sym
delay_hsp.sym launcher.sym pnp.sym vsource_arith.sym
delay_line.sym netlist_at_end.sym port_attributes.sym vsource_pwl.sym
delay.sym netlist_not_shown.sym res.sym vsource.sym
diode.sym netlist.sym spice_probe.sym zener.sym
flash_cell.sym nmos3.sym spice_probe_vdiff.sym
generic_pin.sym nmos4.sym switch_hsp_pwl.sym
user:devices$ cd ...share/doc/xschem/
user:xschem$ ls

 SYMBOLS

22

examples pcb

To place a symbol in the schematic window press the 'Insert' key. A file chooser pops up, go to the xschem devices
directory (.../share/xschem/xschem_library/devices in the distribution by default) and select a symbol
(res.sym for example). The selected symbol will be instantiated as a component in the schematic at the mouse pointer
coordinates.

 SYMBOLS

23

PREV UP NEXT

SYMBOLS

The best way to understand how a symbol is defined is to analyze an existing one. Load a test schematic (for example
test.sch). Let's consider the resistor symbol. Use the Insert key to place the devices/res.sym symbol.

Use the file selector dialog to locate res.sym.

24

Now select the resistor by left-clicking on it (it will turn to grey color)

SYMBOLS

25

After selecting the component (component is an instance of a symbol) descend into its symbol definition by pressing the
'i' key. XSCHEM will load the devices/res.sym file and show it in the drawing window. Before descending it
asks if you want to save the parent schematic drawing before loading the resistor symbol. Answer 'yes'.

SYMBOLS

26

The image above is the 'symbol definition', you can now select individual graphic elements that represent the symbol,
lines, rectangles and text. Normally a symbol contains some pins, these are just rectangles drawn on the 'pin' layer, and
some graphics / descriptive text. Another fundamental part of symbols are properties. Properties are text strings that
define attributes of the symbol, for example:

The name of the connection pins•
The type of the symbol (spice primitive, subcircuit, documentation)•
The format of the spice/verilog/VHDL netlist for the symbol•

We will return on symbols after explaining properties.

SYMBOLS

27

PREV UP NEXT

XSCHEM PROPERTIES

Properties are text strings that are associated to XSCHEM objects. All graphic primitives support properties.

Wires•
Lines•
Polygons•
Rectangles•
Circles/Arcs•
Texts•
Symbol references•
Global attributes•

Consider for example the res.sym symbol (you may open it with the File->Open menu item) if you click inside one
of the red pins and press the 'edit property' bindkey 'q' a dialog box shows the property string associated with the
selected pin:

The name=p dir=inout propag=1 pinnumber=1 property string tells that the selected pin name is 'p', this
will be the symbol positive pin name in the produced netlist. The property string also defines a dir attribute with value

28

inout. This tells XSCHEM that electrically this is an input/output pin. This is important when producing VHDL/verilog
netlists. The propag=1 tells XSCHEM that when we select a wire attached to this pin (which is located at index 0 in
xschem) the highlight will propagate to the other pin (with index 1). To view the xschem index of a pin click and hold the
mouse on it, the index will be shown as n= <number> in the bottom status line:

The pinnumber=1 attribute is used when exporting to pcb software (via the tEDAx netlist) and tells to which pin
number on the resistor footprint this positive pin is bound. The second (bottom) pin property string is
name=m dir=inout propag=0 pinnumber=2 and this defines the negative pin. The text primitives also have
properties. For texts the property string may be used to specify font and the layer to use for displaying text.

XSCHEM PROPERTIES

29

GLOBAL PROPERTIES

If you click outside of any displayed graphics in XSCHEM the selection set will be cleared. Clicking the edit property
'q' key when nothing is selected will display the global property string of the schematic (.sch) or symbol window
(.sym).

There is actually one different global property string defined for any available netlisting modes plus one global property
string for symbol definition (file format 1.2), so if XSCHEM is set to produce SPICE netlists the SPICE global property
string is displayed.

So, in addition to properties associated to graphical objects and symbols, we also have properties associated to schematic
(.sch) and symbol files (.sym)

GLOBAL PROPERTIES

30

In the above 'Symbol' global property string, the format attribute defines the format of the SPICE netlist. The SPICE
netlist element line starts with the symbol name (in this case a resistor so 'rxxxxx'), the list of pins, the resistor value and a
multiplicity factor (m).
@pinlist will resolve to the parent nets attached to the resistor nodes, in the order they appear in the symbol (in this
example; first node = 'p', second node = 'm').
We will return on component instantiation later, but for now, considering the following picture:

GLOBAL PROPERTIES

31

The @name will expand to R0, @pinlist for the R0 component will expand to POS NEG.
@value resolves to the resistor value assigned in component instantiation. The template attribute defines default
values if component instantiation does not define values for them.
If you want to add a pin to an existing symbol you may copy one of these. Select a pin, press the copy 'c' bindkey and
place a new copy of it somewhere.

GLOBAL PROPERTIES

32

After copying the pin you may change its properties, for example you will change its property string to something like:
name=body dir=in (just as an example).
Note that pins in symbols are nothing more than rectangles drawn with the pin layer; instead of copying an existing one
you may create it from scratch, select the pin layer from the Layers menu, point the mouse where you want to place the
pin, press the 'r' bindkey and drag the mouse to the desired pin size. There is no inherent limit or assumption on pin
sizes, you are allowed to create any rectangular/square sizes. After placing the rectangle you must create a property string
by selecting it and pressing the 'q' bindkey. An empty string is shown in the dialog. Add a valid string as explained and
you are all done.

PIN ORDERING

An important aspect for symbols is the order of the pins when producing the netlist. There are some rules in the order for
example in SPICE netlist syntax; for example a Bipolar transistor has 3 pins and should be in a specific order (collector,
base, emitter). When done placing pins on a newly created symbol you can specify the order by selecting the one that
must be the first in the netlist and hitting the '<shift>S' bindkey; set the number to zero; this will make the selected
pin the first one. Next, select the second pin and again hit '<shift>S', set its number to 1 and so on. By doing so you
have defined a specific pin ordering of the symbol.

 PIN ORDERING

33

PRIMITIVE OBJECT PROPERTIES

The following attribute may be set on lines, arcs, polygons, rectangles:

dash=n, where n = integer. This specifies dashed mode drawing for the specified object.•

The following attribute may be set on arcs, polygons, rectangles:

fill=true. This specifies to fill the object with the layer predefined fill style. The default for rectangles (for
historical reasons) is to use fill style if not specified. For arcs and polygons the default is to not use fill if
unspecified.

•

The following attribute may be set on rectangles and instances:

lock=true (or 1) can be set to disallow selecting the object. You always can double click on it to edit the
attributes and reset lock to false (or 0). This is useful for title objects or frames you don't want to select while
editing inside them.

•

The following attribute may be set on wires and lines:

bus=true. This specifies to draw a wider line. Mostly used to display wire buses.•

 PRIMITIVE OBJECT PROPERTIES

34

 PRIMITIVE OBJECT PROPERTIES

35

PREV UP NEXT

COMPONENT INSTANTIATION

In the RUN XSCHEM slide some instructions were provided as examples to place a component in the schematic. Now we
will cover the topic in more detail with emphasis on component properties. Start by opening a test schematic window (you
may delete any existing stuff in it if any).

Now start by inserting a component, consider for example devices/nmos4.sym; press the Insert key, navigate to
the devices design library and open the nmos4.sym symbol.

36

Now draw some wires on each pin of the nmos; place the mouse pointer on the component pins and use the 'w' bindkey.

we need now to put labels on wire ends: use the Insert key and locate the devices/lab_pin.sym symbol. After
the lab_pin symbol is placed you can move it by selecting it with the mouse and pressing the 'm' bindkey. You can
also flip ('F') and rotate while moving ('R') to adjust the orientation. After placing the first one you may copy the
others from it ('c' bindkey). The end result should look like this:

This is what an electrical circuit is all about: a network of wires and components. In this schematic we have 5 components
(4 labels and one mos) and 4 nets. It is not mandatory to put a wire segment between component pins; we could equally
well do this:

COMPONENT INSTANTIATION

37

This circuit is absolutely equivalent to the previous one: it will produce the same device connectivity netlist.
Now we need to set appropriate labels on the NMOS terminals. This is -again- accomplished with component properties.
Select the wire label on the nmos source pin and press the 'q' bindkey:

Now, replace the 'xxx' default string in the dialog with a different name (example: SOURCE) After clicking OK the source
terminal will have the right label.

repeat the process for the remaining GATE, DRAIN, BODY terminals;

COMPONENT INSTANTIATION

38

The following picture shows the lab_pin component with its properties and the corresponding symbol definition with
its global properties (remember global properties in the xschem_properties slide)

COMPONENT INSTANTIATION

39

COMPONENT INSTANTIATION

40

when building the netlist XSCHEM will look for wires that touch the red square of the lab_pin component and name that
wires with the component 'lab' property. for example the SPICE netlist of the circuit will be:

m1 DRAIN GATE SOURCE BODY nmos w=5u l=0.18u m=1

We need now to edit the nmos properties. Select it and press the 'q' bindkey

from the edit properties dialog you see there are 5 attributes with values defined:

The component name name=m1.•
The spice model to be used in simulation model=nmos.•
The transistor width w=5u.•
The transistor channel length l=0.18u.•
The number of parallel transistors (multiplicity) m=1.•

We have never defined a value for these properties. These are the default values defined in the template attribute in the
global nmos4.sym property string.

COMPONENT INSTANTIATION

41

We may want to change the dimensions of the transistor; simply change the w and l attribute values.
Also the component name may be changed as long as it is unique in the current schematic window. All simulators require
that components are unique, it is not permitted to have 2 components with identical name, so XSCHEM enforces this.

If a name is set that matches an existing component xschem will rename it keeping the first letter (m in this example) and
appending a number (so you might end up in something like m23 if there are many devices).

the name attribute is unique in the schematic window, and must be placed first in the property string. The name is also
used by xschem to efficiently index it in the internal hash tables.

SPECIAL COMPONENTS

General purpose

devices/ipin.sym•
devices/opin.sym•

SPECIAL COMPONENTS

42

devices/iopin.sym•

These components are used to name a net or a pin of another component. They do not have any other function
other than giving an explicit name to a net.

devices/lab_pin.sym•
devices/lab_wire.sym•
devices/launcher.sym•
devices/architecture.sym

This prints global attributes of the schematic. Attributes of this symbol should not be set. It is a readonly symbol
printing top-level schematic properties.

•

Spice netlist special components

devices/code.sym•
devices/code_shown.sym•

these symbols are used to place simulator commands or additional netlist lines as text into the schematic.

Verilog netlist special components

devices/verilog_timescale.sym•
devices/verilog_preprocessor.sym•

VHDL netlist special components

SPECIAL COMPONENTS

43

devices/use.sym•
devices/package.sym•
devices/package_not_shown.sym•
devices/arch_declarations.sym•
devices/attributes.sym•
devices/port_attributes.sym•
devices/generic_pin.sym•
devices/lab_generic.sym•

SPECIAL COMPONENTS

44

PREV UP NEXT

SYMBOL PROPERTY SYNTAX

GENERAL RULES

For symbols a global property string (to show it press 'q' when nothing is selected and Options->Symbol global
attrs is selected) defines at least 3 attributes:

type defines the the type of symbol. Normally the type attribute describes the symbol and is ignored by
XSCHEM, but there are some special types:

•

subcircuit: the symbol has an underlying schematic representation, when producing the netlist
XSCHEM has to descend into the corresponding schematic. This will be covered in the subcircuits
chapter.

♦

primitive: the symbol has a schematic representation, you can descend into it but the netlister will not
use it. This is very useful if you want to netlist a symbol using only the format (or vhdl_format or
verilog_format depending on the netlist type) attribute or use the underlying schematic. By setting
the attribute back to subcircuit and deleting (or setting to false) the verilog_format of
vhdl_format attribute you can quickly change the behavior. For spice netlists the format attribute is
always used also for subcircuits instantiation so always leave it there.

♦

Any value different from subcircuit or primitive will cause xschem to not use any schematic file
even if it exists. Xschem will not allow to descend into an existing schematic.

♦

label: the symbol is used to label a net. These type of symbols must have one and only one pin, and the
template string must define a lab attribute that is passed at component instantiation to name the net it is
attached to.

♦

probe: this denotes a probe symbol that may be backannotated with a backannotation script (example:
ngspice_backannotate.tcl).

♦

ngprobe: This is a probe element that uses a 'pull' method to fetch simulation data and display it in
current schematic. The data displayed is thus dynamic, multiple instances of the same symbol with
annotators will display operating point data for that particular instance without the need to update the
backannotation as is required for annotators using the 'push' annotation method.

♦

netlist_commands: the symbol is used to place SPICE commands into a spice netlist. It should also
have a value attribute that may contain arbitrary text that is copied verbatim into the netlist. More on
this in the netlist slide.

♦

45

Only symbols of type subcircuit or primitive may be descended into with the 'e' bindkey if they have a
schematic view.

format: The format attribute defines the syntax for the SPICE netlist. the @ character is a 'substitution
character', it means that the token that follows is a parameter that will be substituted with the value passed at
component instantiation. If no value is given there a value will be picked from the attribute declared in the
template string.
The @pinlist is a special token that will be substituted with the name of the wires that connect to symbol pins,
in the order they are created in the symbol. See the pin ordering section in the xschem properties slide. if the order
of pins for a NMOS symbol is for example, d,g,s,b, then @pinlist will be expanded when producing a netlist to
the list of nets that connect to the symbol drain, gate, source, body respectively. There is also a special way to
define single pins: @@d for example will be replaced by XSCHEM with the net that connects to the d pin of the
symbol. so for example @pinlist is equivalent to @@d @@g @@s @@b. However using @pinlist and
setting the correct pin ordering in the symbol pins will make netlist generation faster. This is important for very
big components with lot of pins, and @pinlist is the default when symbol is generated automatically (Symbol
->Make symbol menu of <Shift>A key).
The format attribute may contain a @spiceprefix string immediately preceding (with no spaces) the
@name attribute.. This will be substituted with value given in instance (example: spiceprefix=X) but
ONLY if Simulation->Use 'spiceprefix' attribute is set. This allows to create different
netlists for simulation (example: all MOS are defined as subcircuits) or LVS (no device subcircuits).

•

GENERAL RULES

46

lvs_format: This is the netlisting format attribute that is automatically selected if Xschem is set to produce a
LVS netlist (Simulation->LVS netlist: top level is a subckt). This means that a symbol
may have two different attributes for netlisting: format use dfor spice simulations and lvs_format for
schematic to layout (LVS) comparison. More in general the xschem command xschem set format
my_format will instruct xschem to use my_format as netlisting rule for components that have this attribute
defined. If symbols do not have the my_format attribute the default fallback (format for spice netlist) is used.

•

template: Specifies default values for symbol parameters•

GENERAL RULES

47

The order these attributes appear in the property string is not important, they can be on the same line or on different lines:

type=nmos format="@name @pinlist @model w=@w l=@l m=@m" template="name=m1 model=nmos w=5u l=0.18u m=1"

format="@name @pinlist @model w=@w l=@l m=@m"
template="name=m1 model=nmos w=5u l=0.18u m=1"
type=nmos

As you see double quotes are used when attribute values have spaces. For this reason if double quotes are needed in an
attribute value they must be escaped with backslash \"

since the symbol global property string is formatted as a space separated list of attribute=value items, if a value
has spaces in it it must be enclosed in double quotes, see for example the symbol template attribute:
template="name=m1 model=nmos w=5u l=0.18u m=1" or the the format attribute: format="@name
@pinlist @model w=@w l=@l m=@m". As a direct consequence a literal double quote in property strings must be
escaped (\")

ATTRIBUTE SUBSTITUTION

XSCHEM uses a method for attribute substitution that is very similar to shell variable expansion done with the $
character (for example $HOME --> /home/user) The only difference is that XSCHEM uses the '@' character. The
choice of '@' vs '$' is simply because in some simulation netlists shell variables are passed to the simulator for expansion,
so to avoid the need to escape the '$' in property strings a different and less used character was chosen.
A literal @ must be escaped to prevent it to be interpreted as the start of a token to be substituted (\@). If a non space
character (different than @) ends a token it must be escaped. Attribute substitution with values defined in instance
attributes takes place in symbol format attribute and in every text, as shown in below picture.

ATTRIBUTE SUBSTITUTION

48

In recent xschem versions a % prefixed attribute (example: %var) can be used instead of a @ prefix. The only difference
is that if no matching attribute is defined in instance the %var resolves to var instead of an empty string.

If no matching attribute is defined in instance (for example we have @W in symbol and no W=... in instance) the @W
string is substituted with an empty string.

OTHER PREDEFINED SYMBOL ATTRIBUTES

vhdl_ignore•
spice_ignore•
verilog_ignore•
tedax_ignore•

These 4 attributes tell XSCHEM to ignore completely all instances of the symbol in the respective netlist formats.
Allowed values for these attributes are true (or open), false and short If short is specified all symbol
instances will short together all their pins. For this to work only one of the nets connected to the symbol may have
a net label attached to it. All other nets will take this name. If more labeled nets connect to the shorted symbol a
net short error is reported. Shorted symbol instances are displayed in the pin color (red) layer. See some images in
the component properties man page when describing the same instance based attributes.
Disabled symbols (spice_ignore=true or spice_ignore=open) are displayed in grey.

lvs_ignore•

This attribute works in the same way as above attributes, may take the values true (or open), false or
short, and will affect the symbol behaviour in the same way, but only if tcl variable lvs_ignore is set to 1.
This can be done in the Simulation menu: Set 'lvs_ignore' variable. If this lvs_ignore is set on
the symbol it will be shorted / ignored or kept as is depending on its lvs_ignore attribute and will be effective
in all netlisting formats. This is mostly used to modify the produced netlist automatically when doing schematic
vs layout (LVS) comparison.

vhdl_stop•
spice_stop•
verilog_stop•
tedax_stop•

OTHER PREDEFINED SYMBOL ATTRIBUTES

49

These 4 attributes will avoid XSCHEM to descend into the schematic representation of the symbol (if there is
one) when building the respective netlist format. For example, if an analog block has a schematic (.sch) file
describing the circuit that is meaningless when doing a VHDL netlist, we can use a vhdl_stop=true attribute
to avoid descending into the schematic. Only the global property of the schematic will be netlisted. This allows to
insert some behavioral VHDL code in the global schematic property that describes the block in a way the VHDL
simulator can understand.

spice_primitive•
vhdl_primitive•
verilog_primitive•

Same as above _stop attributes, but in this case the schematic subcircuit is completely ignored, only the 'format'
string is dumped to netlist. No component/entity is generated in vhdl netlist, no module declaration in verilog, no
.subckt in spice, no schematic global attributes are exported to netlist.

default_schematic•

If set to ignore xschem will not descend into the symbol associated schematic and will not complain if this
schematic does not exists. To descend into a schematic instances must specify a schematic attribute, otherwise
no descending and expansion occurs.

spice_sym_def•
verilog_sym_def•
vhdl_sym_def•

If any of these attributes are present and not empty and the symbol type is set to subcircuit the corresponding
netlister will ignore the schematic subcircuit and dump into the netlist the content of this attribute. The typical
usage is to include a file, example:

 verilog_sym_def="tcleval(`include \"[abs_sym_path verilog_include_file.v]\")"

For spice netlists if @pinlist is used in format string and spice_sym_def attribute is defined the port order
will be derived from the subcircuit referenced by the spice_sym_def attribute.

In this example a verilog_include_file.v is included using the verilog `include directive. In order to
generate a full path for it the abs_sym_path TCL function is used that searches for this file in any of the
XCHEM_LIBRARY_PATH directories. Since TCL is used the attribute is wrapped into a tcleval(...),
The following will appear in the generated netlist:

// expanding symbol: verilog_include.sym # of pins=3
// sym_path: /home/schippes/.xschem/xschem_library/verilog_include.sym
`include "/home/schippes/.xschem/xschem_library/verilog_include_file.v"

highlight•

If set to true the symbol will be highlighted when one of the nets attached to its pins are highlighted.

net_name•

If set to true the #n:net_name symbol attributes will display the net names attached to pin terminals. the n is
a pin number or name.

OTHER PREDEFINED SYMBOL ATTRIBUTES

50

place•

This attribute is only useable in netlist_commands type symbols (netlist.sym, code.sym,...) if
set to end it tells XSCHEM that the component instance of that symbol must be netlisted at the end, after all the
other elements. This is sometimes needed for SPICE commands that must given at the end of the netlist. This will
be explained more in detail in the netlisting slide.
The place=header attribute is only valid only for netlist_commands type symbols and spice netlisting mode,
it tells XSCHEM that this component must be netlisted in the very first part of a spice netlist. This is necessary
for some spice commands that need to be placed before the rest of the netlist.

generic_type•

generic_type defines the type of parameters passed to VHDL/Verilog components. Consider the following
MOS symbol definition; the model attribute is declared as string and it will be quoted in VHDL netlists.

the resulting netlist is shown here, note that without the generic_type attribute the irf5305 string would
not be quoted.

entity test2 is
end test2 ;

architecture arch_test2 of test2 is
signal d : std_logic ;
signal s : std_logic ;
signal g : std_logic ;
begin
x3 : pmos3
generic map (
 model => "irf5305"

OTHER PREDEFINED SYMBOL ATTRIBUTES

51

)
port map (
 d => d ,
 g => g ,
 s => s
);

end arch_test2 ;

extra•

This property specifies that some parameters defined in the format string are to be considered as additional
pins. This allows to realize inherited connections, a kind of hidden pins with connections passed as parameters.
Example of a symbol definition for the following cmos gate:

the symbol property list defines 2 extra pins , VCCPIN and VSSPIN that can be assigned to at component
instantiation. The extra property tells XSCHEM that these 2 parameters are connection pins and not parameters
and thus must not be declared as parameters in the .subckt line in a spice netlist:

type=subcircuit
vhdl_stop=true
format="@name @pinlist @VCCPIN @VSSPIN @symname wn=@wn ln=@ln wp=@wp lp=@lp m=@m"
template="name=x1 m=1
+ wn=30u ln=2.4u wp=20u lp=2.4u
+ VCCPIN=VCC VSSPIN=VSS"
extra="VCCPIN VSSPIN"
generic_type="m=integer wn=real ln=real wp=real lp=real VCCPIN=string VSSPIN=string"
verilog_stop=true

with these definitions the above schematic will be netlisted as:

**.subckt prova1
x2 G_y G_a G_b G_c VCC VSS lvnand3 wn=1.8u ln=0.18u wp=1u lp=0.18u m=1
**.ends
* expanding symbol: customlogicLib/lvnand3 # of pins=4
.subckt lvnand3 y a b c VCCPIN VSSPIN wn=30u ln=2.4u wp=20u lp=2.4u
*.opin y
*.ipin a

OTHER PREDEFINED SYMBOL ATTRIBUTES

52

*.ipin b
*.ipin c
m1 net2 a VSSPIN VSSPIN nlv w=wn l=ln geomod=0 m=1
m2 y a VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1
dxm2 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31u)' pj='2*(wp +57u)+2*(lp +31u)'
m3 y b VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1
dxm3 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31u)' pj='2*(wp +57u)+2*(lp +31u)'
m6 y c net1 VSSPIN nlv w=wn l=ln geomod=0 m=1
m4 y c VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1
dxm4 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31u)' pj='2*(wp +57u)+2*(lp +31u)'
m5 net1 b net2 VSSPIN nlv w=wn l=ln geomod=0 m=1
.ends

Without the extra property in the cmos gate symbol the following incorrect netlist will be produced:

**.subckt prova1
x2 G_y G_a G_b G_c VCC VSS lvnand3 wn=1.8u ln=0.18u wp=1u lp=0.18u m=1
**** begin user architecture code
**** end user architecture code
**.ends

* expanding symbol: customlogicLib/lvnand3 # of pins=4

.subckt lvnand3 y a b c wn=30u ln=2.4u wp=20u lp=2.4u VCCPIN=VCC VSSPIN=VSS
*.opin y
*.ipin a
*.ipin b
*.ipin c
m1 net2 a VSSPIN VSSPIN nlv w=wn l=ln geomod=0 m=1
m2 y a VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1
dxm2 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31u)' pj='2*(wp +57u)+2*(lp +31u)'
m3 y b VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1
dxm3 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31u)' pj='2*(wp +57u)+2*(lp +31u)'
m6 y c net1 VSSPIN nlv w=wn l=ln geomod=0 m=1
m4 y c VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1
dxm4 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31u)' pj='2*(wp +57u)+2*(lp +31u)'
m5 net1 b net2 VSSPIN nlv w=wn l=ln geomod=0 m=1
**** begin user architecture code
**** end user architecture code
.ends

as you can see the VSSPIN and VCCPIN are listed as parameters in addition as pins in the netlist.

verilog_extra•

This attribute is similar to the extra attribute and is used for verilog netlist. Nodes listed in this attribute value
will be used as additional pin connections.

the extra attribute is still used in verilog netlist as a list of attributes NOT to pass as symbol parameters

You may assign the following attributes to an instance: name=X1 VPWR=VCC VGND=GND subckt=NOR2_1
and you want to have VCC and GND connections to the symbol in the Verilog netlist but do not want any of
these attributes to be passed as symbol parameters. In this case you set: verilog_extra="VPWR VGND" and
extra="VPWR VGND subckt" since subckt is probably a spice attribute and you don't want it in verilog.

OTHER PREDEFINED SYMBOL ATTRIBUTES

53

verilog_extra_dir•

This attribute allows to define the pin directions of verilog_extra symbol ports. If unspecified the default is
inout. Allowed values are input, output, inout.
Example: verilog_extra_dir="VPWR=input VGND=input"

verilogprefix•

If this attribute is defined in symbol it will be used as a prefix to the symbol name and subcircuit expansion in
verilog netlists.

dir•

Defines the direction of a symbol pin. Allowed values are in, out, inout.

pinnumber•
For packaged devices (tEDAx netlists) : indicate the position of the pin on the package. This can be overriden at
instance level by attributes pinnumber(name) set in the instance for tEDAx netlists.

sim_pinnumber•

For VHDL, SPICE, Verilog netlists: define the ordering of symbol ports in netlist. If all symbol pins have a
sim_pinnumber attribute this symbol will be netlisted (in all netlist formats) with pins sorted in ascending order
according to sim_pinnumber value. Start value of sim_pinnumber does not matter (may start at 1 or 0) , it is used

OTHER PREDEFINED SYMBOL ATTRIBUTES

54

as the sort key. You can assign the sim_pinnumber attribute directly in the symbol...

... Or you can assign these in the schematic pins, if you use the "Make symbol from schematic" function ('a' key)
these attributes will be transferred to the symbol.
The sim_pinnumber attributes that determine the netlist port ordering are those defined in the symbol.

OTHER PREDEFINED SYMBOL ATTRIBUTES

55

For sorting to happen all symbol pins must have a sim_pinnumber attribute. If some pins miss this attribute no
sorting is done and pin ordering will be unchanged, the stored order of symbol pins will be used (first created pin
netlisted first).
If there are duplicate sim_pinnumber attributes (but all pins have this attribute) sorting will happen but relative
ordering or pins with identical sim_pinnumber is undefined.
As an example you may give sim_pinnumber=9999 on a symbol output and sim_pinnumber=1 on all other pins if
you only require the output pin to be netlisted at the end, and don't care about the other pin ordering.

propag=n•

This attribute instructs xschem to do a 'propagate highlight' from the pin with this attribute to the pin n. The
number 'n' refers to the pin sequence number (do a shift-S after selecting destination pin to know this
information).

goto=n[,m,...]•

This attribute is used in the xschem embedded digital simulation engine: propagate logic simulation to the output
pins n,[m,...]. The logic function is defined via the 'functionn' global attribute. There is one 'functionn' for
each n output pin. see 'functionn' attribute for more info.

OTHER PREDEFINED SYMBOL ATTRIBUTES

56

clock=n•

A clock attribute defined on input pins add some information on the pin function as follows:

clock=0 This indicates an 'active low' clock signal for flip-flops♦
clock=1 This indicates an 'active high' clock signal for flip-flops♦
clock=2 This indicates an 'active low' reset signal for flip-flops♦
clock=3 This indicates an 'active high' reset signal for flip-flops♦

function•

This attribute is set in the symbol global attributes and specifies the logic function to be applied to the associated
output pin. The format is: function<n>="...logic function..." where the number <n> refers to the
sequence number of the output pin (do a 'Shift-S' after selecting the pin to know its sequence number). Multiple
functions (function3="...", function4="...") can be defined in case of elements with multiple outputs.

OTHER PREDEFINED SYMBOL ATTRIBUTES

57

Commands that can appear in functions are:

n: A digit indicates to put on the stack the logic value (0, 1, X) of pin with sequence number n The
sequence number of a pin my be obtained by clicking the red square of the pin and pressing Shift-S.

♦

&: Does a logical AND operation of the last 2 elements on top of the stack, the result is left on the stack♦
|: Does a logical OR operation of the last 2 elements on top of the stack, the result is left on the stack♦
^: Does a logical XOR operation of the last 2 elements on top of the stack, the result is left on the stack♦
~: Does a logical Negation operation of the last element on top of the stack, the result is left on the stack♦
M: preceeded by 3 element 'a', 'b', 'm', return 'a' if 'm' == 0, 'b' if 'm'==1, else 'X'♦
m: same as above, but don't update if 'm' not 1 or 0. Used to avoid deadlocks.♦
z: preceeded by 2 elements, 'a', 'e', return 'a' if 'e' == 1 else Z (hi-Z)♦
d: Duplicates top element on the stack♦
x: Exchanges the 2 top elements on the stack♦
r: Rotate down: bottom element of stack goes to top♦
H: Puts a Logic '1' on the stack♦
L: Puts a Logic '0' on the stack♦
Z: Puts a Logic 'Z' on the stack♦
U: Puts a Logic 'U' on the stack (do not assign to node)♦

The remaining value on the stack is the value that is returned and assigned to the output pin.

global•

a global=true property in a label type symbol will declare the corresponding net as 'global'. Global nets in
spice netlists are like global variables in a C program, these nets are accessible at any hierarchical level without
the need of passing them through pin connections.

OTHER PREDEFINED SYMBOL ATTRIBUTES

58

spice_netlist•
verilog_netlist•
vhdl_netlist•

If any of these 3 properties if set to true the symbol will be netlisted in the specified format. This is only valid if
the split file netlisting mode is active (Options -> Split netlist). This is very rarely used but is
required in mixed mode simulations, where part of the system will be handled by an analog simulator (spice) and
another part of the system by a digital Verilog / VHDL simulator.
verilog_format•

This is the Verilog equivalent of the format property for Spice primitives. This is a valid definition for a 2 input
inverted XOR gate:

verilog_format="xnor #(@risedel , @falldel) @name (@@Z , @@A , @@B);"

vhdl_format•

same as above for VHDL primitives.

tedax_format•

same as above for tEDAx netlists.

device_model•

OTHER PREDEFINED SYMBOL ATTRIBUTES

59

This attribute contains a SPICE .model or .subckt specification (device_model=".model D1N4148 D
....") that will be printed at end of netlist only once for the specified component (D1N4148 in the example).

schematic•

This attribute specifies an alternate schematic file to open when descending into the subcircuit:

 schematic=inv_2.sch

It is possible to call a TCL procedure to decide the schematic to descend into:

 schematic="tcleval([hierarchy_config @symname])"

The above schematic attribute will be evaluated by a hierarchy_config TCL procedure (which must be
defined) and the @symname attribute will be expanded to the name of the symbol before passing the argument to
the TCL procedure. This allows user defined schematic selection in the hierarchy to simulate the design at
different details/abstraction levels.
One suggested approach is to define for a given opamp_65nm.sym symbol several schematics like
opamp_65nm.sch, opamp_65nm_pex.sch, opamp_65nm_aged.sch, opamp_65nm_empty.sch, ...
and define some user accessible method in hierarchy_config procedure to select one of these 'switch' schematics.

symbol_ignore•

This attribute can be attached to symbol elements, like lines, rectangles, polygons, arcs, texts, wires and instances
(in case of lcc symbols). If set to true (symbol_ignore=true) the corresponding element will not be
displayed when the symbol is instantiated.

PREDEFINED SYMBOL VALUES

@symname•

This expands to the name of the symbol

@symref•

This expands to the symbol reference exactly as specified in the instance (the Symbol textbox if you edit the
symbol attributes with q key).

@symname_ext•

This expands to the name of the symbol, keeping the extension (usually .sym)

@path•

This expands to the hierarchy path the symbol instance is placed in (example: xcontrol.xdec[3].xinv)

@pinlist•

This expands to the list of nets that connect to symbol pins in the order they are set in the symbol

@@pin•

PREDEFINED SYMBOL VALUES

60

This expands to the net that connect to symbol pin named pin. This substitution takes place only when producing
a netlist (Spice, Verilog, VHDL, tEDAx) so it is allowed to use this value only in format,vhdl_format,
tedax_format or verilog_format attributes (see Netlisting slide)

@#n•

This expands to the net that connect to symbol pin at position n in the XSCHEM internal storage. This
substitution takes place only when producing a netlist (Spice, Verilog, VHDL, tEDAx) so it is allowed to use this
value only in format,vhdl_format, tedax_format or verilog_format attributes (see Netlisting
slide)
This method of accessing a net that connects to a pin is much faster than previous one since XSCHEM does not
need to loop through symbol pin names looking for a match.
Example: @#2: return net name that connects to the third pin of the symbol (position 2).

@#n:pin_attribute•

This expands to the value or property pin_attribute defined in the pin at position n in the XSCHEM
internal storage. This method of looking up properties is very fast.
Example: @#0:pinnumber: This expands to the value of the pinnumber defined in pin object at position 0 in
the xschem internal ordering. This format is very useful for slotted devices where the actual displayed pin number
depends on the slot information defined in the instance name (example: U1:2, slot number 2 of IC U1). These
tokens may be placed as text in the symbol graphic window, not in format strings.

@#pin_name:pin_attribute•

This expands to the value or property pin_attribute defined in the pin named pin_name This method of
looking up properties is a bit slower since xschem has to do string matching to find out the pin.
Example: @#A:pinnumber: This expands to the value of the pinnumber defined in pin A. This format is very
useful for slotted devices where the actual displayed pin number depends on the slot information defined in the
instance name (example: U1:2, slot number 2 of IC U1). These tokens may be placed as text in the symbol
graphic window, not in format strings.

@#pin_name:net_name•
@#n:net_name•

these expand to the net name attached to pin with name pin_name or with sequence number n.

@#pin_name:resolved_net•
@#n:resolved_net•

these expand to the full hierarchy name of the net attached to pin with name pin_name or with sequence
number n.

@#pin_name:spice_get_voltage•
@#n:spice_get_voltage•

these expand to the voltage of the net attached to the pin with name pin_name or with sequence number n,
extracted from simulation raw file (operating point or cursor b position)

@sch_last_modified•

this indicates the last modification time of the .sch file of the symbol.

PREDEFINED SYMBOL VALUES

61

@sym_last_modified•

this indicates the last modification time of the .sym file of the symbol.

@time_last_modified•

this indicates the last modification time of the schematic (.sch) containing the symbol instance.

@schname_ext•

this expands to the name of the schematic (.sch) containing the symbol instance.

@schname•

this expands to the name of the schematic containing the symbol instance, without the extension (no .sch).

@topschname•

this expands to the name of the tol level schematic (.sch) containing the symbol instance.

@prop_ptr•

this expands to the entire property string passed to the component.

@schprop•

this expands to the spice global property string of the schematic containing the symbol

@schvhdlprop•

this expands to the VHDL global property string of the schematic containing the symbol

@schverilogprop•

this expands to the Verilog global property string of the schematic containing the symbol

TCL ATTRIBUTE SUBSTITUTION

Any attribute and symbol text can be embedded in a tcleval(....) construct, the string inside the parentheses will
be passed to the tcl interpreter for evaluation. This allows to use any tcl variable/command/expression. Example:
spice_ignore="tcleval($::ignore_symbol)"
will cause the symbol to be ignored by the spice netlister if the ignore_symbol tcl variable is existing and set to true

TCL ATTRIBUTE SUBSTITUTION

62

PREV UP NEXT

COMPONENT PROPERTY SYNTAX

Component property strings can be set in the usual way with the 'q' on a selected component instance or by menu
Properties --> Edit

The dialog box allows to change the property string as well as the symbol reference. The property string is essentially a
list of attribute=value items. As with symbol properties if a value has white space it should be double-quoted.
The following property definitions are identical:

name=mchanged_name model=nmos w=20u l=3u m=10

name="mchanged_name" model="nmos" w="20u" l="3u" m="10"

Given the role of the " character, if quoted values are needed escapes must be used, like in the following example where
the model name will be with quotes in netlist:

63

name="mchanged_name" model="\"nmos\"" w="20u" l="3u" m="10"

or

name="mchanged_name" model=\"nmos\" w="20u" l="3u" m="10"

the resulting SPICE netlist will be:
mchanged_name DRAIN GATE SOURCE BODY "nmos" w=20u l=3u m=10

There is no limit on the number of attribute=value items, each attribute should have a corresponding
@attribute in the symbol definition format, but this is not a requirement. There are a number of special attributes as
we will see later.

Important: a name=<inst_name> item is mandatory and must be placed in component property string to get a valid
netlist, as this is the partname or so-called refdes (reference designator). If <inst_name> is already used in another
component XSCHEM will auto-rename it to a unique name preserving the first letter (which ts a device type indicator for
SPICE like netlists).

PREDEFINED COMPONENT ATTRIBUTES

name•

This defines the name of the instance. Names are unique, so if for example multiple MOS components are placed
in the design one should be named m1 and the second m2 or anything else, provided the names are different.
XSCHEM enforces this, unless Options -> allow duplicated instance names is set. If a name is
given that already exist in the current schematic it will be renamed. Normally the template string defines a default
name for a given component, and especially for SPICE compatibility, the first character must NOT be changed.
For example, the default name for a MOS transistor is m1, it can be renamed for example to mcurr_source but
not for example to dcurr_source. XSCHEM does not enforce that the first character is preserved, it's up to
the designer to keep it consistent with the component type.

embed•

When the embed=true is set on a component instance the corresponding symbol will be saved into the
schematic (.sch) file on the next save operation. This allows to distribute schematic files that contain the used
symbols so these will not depend on external library symbols. When this attribute is set on a component instance,
all instances in the schematic referring to the same symbol will use the embedded symbol definition. When
descending into an embedded symbol, any changes will be local, meaning that no library symbol will be affected.
The changes will be saved using the embedded tag ([...]) into the schematic file. Removing this attribute will
revert to external symbols after saving and reloading the schematic file.

url•

This attribute defines a location (web page, file) that can be viewed when hitting the <shift>H key (or <Alt>
left mouse button) on a selected component. This is very useful to link a datasheet to a component, for
example. The default program used to open the url is xdg-open. this can be changed in the ~/xschemrc
configuration file with the launcher_default_program variable. url can be an http link or a local file
that has a default association known to xdg-open.

program•

PREDEFINED COMPONENT ATTRIBUTES

64

this attribute can be used to specify an application to be used to open the url link, if the default application has
to be changed or the file type is unknown. for example program=evince may be given to specify an
application for a pdf file specified with url

tclcommand•

this can be any tcl statement (or group of statements separated by semicolons) including all xschem-specific
commands, the statement will be executed when pressing the <shift>H key (or <Alt> left mouse
button) on the selected instance.
The tclcommand and url properties are mutually exclusive.

only_toplevel•

this attribute is valid only on netlist_commands type symbols and specifies that the symbol should be
netlisted only if it is instantiated in the top-most hierarchy. This is very useful for spice commands. Spice
commands are placed in a special netlist component as we will see and are meaningful only when simulating
the block, but should be skipped if the component is simulated as part of a bigger system which has its own (at
higher hierarchy level) netlistcomponent for Spice commands.

PREDEFINED COMPONENT ATTRIBUTES

65

global•

A global=true attribute on instances of label type symbols (like lab_pin.sym, lab_net.sym,
vdd.sym, gnd.sym) will set the specified node to global in SPICE netlists, adding a .GLOBAL statement line
for the node. This will override symbol global=... setting if any.

lock•

A lock=true attribute will make the symbol not editable. the only way to make it editable again is to double
click on it to bring up the edit attributes dialog box and set to false. This is useful for title symbols.

hide•

A hide=true attribute will only display the symbol bounding box.

hide_texts•

A hide_texts=true attribute will hide all symbol texts.

text_size_<n>•

This attribute sets the size of symbol text item number n. This allows instance based symbol text sizing.

text_layer_<n>•

This attribute sets the layer of symbol text item number n. This allows instance based symbol text color
customization.

highlight•

PREDEFINED COMPONENT ATTRIBUTES

66

If set to true the symbol will be highlighted when one of the nets attached to its pins are highlighted.

net_name•

If set to true the #n:net_name symbol attributes will display the net names attached to pin terminals. the n is
a pin number or name.

place•

The place=end attribute is only valid only for netlist_commands type symbols, and tells XSCHEM that
this component must be netlisted last. This is necessary for some spice commands that need to be placed after the
rest of the netlist.

The place=header attribute is only valid only for netlist_commands type symbols and spice netlisting
mode, it tells XSCHEM that this component must be netlisted in the very first part of a spice netlist. This is
necessary for some spice commands that need to be placed before the rest of the netlist.

vhdl_ignore•
spice_ignore•
verilog_ignore•
tedax_ignore•

These 4 attributes tell XSCHEM to ignore completely the instance in the respective netlist formats. Allowed
values for these attributes are true (or open), false and short If short is specified the instance will short
together all its pins. For this to work only one of the nets connected to the symbol may have a net label attached
to it. All other nets will take this name. If more labeled nets connect to the shorted symbol a net short error is
reported. Shorted instances are displayed in the pin color (red) layer. See in below image the upper netname of R1
is VDD.

PREDEFINED COMPONENT ATTRIBUTES

67

Disabled components (spice_ignore=true or spice_ignore=open) are displayed in grey.

lvs_ignore•

This attribute works in the same way as above attributes, may take the values true (or open), false or
short, and will affect the specific instance behaviour in the same way, but only if tcl variable lvs_ignore is
set to 1. This can be done in the Simulation menu: Set 'lvs_ignore' variable. If this lvs_ignore is
set on the instance it will be shorted / ignored or kept as is depending on its lvs_ignore attribute and will be
effective in all netlisting formats. This is mostly used to modify the produced netlist automatically when doing
schematic vs layout (LVS) comparison.

By using the *_ignore attributes you can modify the circuit depending on the value of a tcl variable:

PREDEFINED COMPONENT ATTRIBUTES

68

just set the attribute to something like:

 spice_ignore="tcleval([if {$IGNORE == 1} {return {true}} else {return {false}}])"

or:

 spice_ignore="tcleval([if {$IGNORE == 1} {return {short}} else {return {false}}])"

PREDEFINED COMPONENT ATTRIBUTES

69

spice_sym_def•
verilog_sym_def•
vhdl_sym_def•

If any of these attributes are present and not empty and the symbol type is set to subcircuit the corresponding
netlister will ignore the schematic subcircuit for this specific instance and dump into the netlist the content of this
attribute. This attribute must be paired with a schematic=... attribute set on the instance that tells the
subcircuit name to use for this particular instance. The typical usage is to include a file, example:

 verilog_sym_def="tcleval(`include \"[abs_sym_path verilog_include_file.v]\")"

In this example a verilog_include_file.v is included using the verilog `include directive. In order to
generate a full path for it the abs_sym_path TCL function is used that searches for this file in any of the
XCHEM_LIBRARY_PATH directories. Since TCL is used the attribute is wrapped into a tcleval(...),
The following will appear in the generated netlist:

// expanding symbol: verilog_include.sym # of pins=3
// sym_path: /home/schippes/.xschem/xschem_library/verilog_include.sym
`include "/home/schippes/.xschem/xschem_library/verilog_include_file.v"

sig_type•

For VHDL type netlist, this tells that the current label names a signal (or constant) of type sig_type. For
example a label can be placed with name TEST and sig_type=BIT. The default type for VHDL if this
property is missing is std_logic. The following picture shows the usage of sig_type and the resulting
VHDL netlist. This property is applicable only to label type components: ipin.sym, iopin.sym,
opin.sym, lab_pin.sym, lab_wire.sym.

PREDEFINED COMPONENT ATTRIBUTES

70

verilog_type•

This is the same as sig_type but for verilog netlisting: can be used to declare a wire or a reg or any other
datatype supported by the verilog language.

generic_type•

generic_type defines the type of parameters passed to VHDL components. Consider the following examples
of placement of generic_pin components in a VHDL design:

PREDEFINED COMPONENT ATTRIBUTES

71

As you will see in the parameters slide, generics (they are just parameters passed to components) can be passed
also via property strings in addition to using generic_pin components.

class•

The class attribute is used to declare the class of a VHDL signal, most used classes are signal and
constant. Default if missing is signal.

device_model•

This attribute contains a SPICE .model or .subckt specification (device_model=".model D1N4148 D
....") that will be printed at end of netlist only once for the specified component (D1N4148 in the example).
device_model attributes defined at instance level override the device_model set in the symbol if any.

schematic•

This attribute specifies an alternate schematic file to open when descending into the subcircuit. This is done only
for the specific instance allowing to differentiate implementation ona specific instance of a given subcircuit. The
specified schematic must have the same interface (in/out/inout pins) as the base schematic (that is inferred from
the symbol name).
Example: schematic=sky130_tests/inv2.sch

pinnumber(name)•

This will override at instance level the value of attribute pinnumber of pin name of the symbol. This is mainly
used for tedax, where by back annotation a connection to a symbol must be changed.

pinnumber(index)•

PREDEFINED COMPONENT ATTRIBUTES

72

This will override at instance level the value of attribute pinnumber of indexth pin of the symbol. This is
mainly used for tedax, where by back annotation a connection to a symbol must be changed. This notation is
faster since xschem does not have to find a pin by string matching.

pin_attr(name|index)•

This is a general mechanism where at instance level a pin attribute may be overridden for netlisting. Example:
sig_type(OUT)=bit_vector (set VHDL type of pin OUT to bit_vector).

TCL ATTRIBUTE SUBSTITUTION

Any attribute and symbol text can be embedded in a tcleval(....) construct, the string inside the parentheses will
be passed to the tcl interpreter for evaluation. This allows to use any tcl variable/command/expression. Example:
value="tcleval([expr {[info exists ::resval] ? $::resval : {100k}}])"
this attribute will set value (example: value of a resistor) to 100k if global tcl variable resval is not set or to the value
of resval if set.

TCL ATTRIBUTE SUBSTITUTION

73

PREV UP NEXT

CREATING A CIRCUIT SCHEMATIC

To create a new circuit start from an empty window, run xschem and select New Schematic in the File menu.
Suppose we want co create a NAND gate, with two inputs, A and B and one output, Z. Lets start placing the input and
output schematic pins; use the Insert key and locate the devices/ipin.sym symbol. After placing it change its lab
attribute to 'A'

Copy another instance of it and set its lab attribute to B. Next place an output pin devices/opin.sym and set its lab to
Z. The result will be as follows:

Now we need to build the actual circuit. Since we plan to do it in CMOS technology we need nmos and pmos transistors.
Place one nmos from devices/nmos4.sym and one pmos from devices/pmos4.sym By selecting them with the
mouse, moving (m bindkey), copying ('c' bindkey) place 4 transistors in the following way (the upper ones are pmos4,
the lower ones nmos4):

74

now draw wires to connect together the transistor to form a NAND gate; in the picture i have highlighted 2 electrical
nodes by selecting one wire segment of each and pressing the 'k' bindkey.

Next we need to place the supply nodes , VCC and VSS. we decide to use global nodes. Global nodes in SPICE semantics
are like global variables in C programs, they are available everywhere, we do not need to propagate global nodes with
pins. We could equally well use regular pins , as used for the A and B inputs, I am just showing different design styles.
Use the Insert key and place both devices/vdd.sym and devices/gnd.sym Since the default names are
respectively VDD and GND use the edit property bindkey 'q' to change these to VCC and VSS.

CREATING A CIRCUIT SCHEMATIC

75

we still need to connect the body terminals of the mos transistors. One possibility is to hookup the two upper pmos
transistor terminals to VCC with wires, and the two bottom nmos terminals to VSS with wires, but just to show different
design styles i am planning to use ''by name'' connection with labels. So place a wire label devices/lab_pin.sym
and use 4 instances of it to name the 4 body terminals. Remember, while moving (select and press the 'm' key) you can
flip/rotate using the R/F keys.

CREATING A CIRCUIT SCHEMATIC

76

Finally we must connect the input and output port connectors, and to complete the gate schematic we decide to use W=8u
for the pmos transistors. Select both the pmos devices and press the edit property 'q' key; modify from 5u (default) to
8u.

CREATING A CIRCUIT SCHEMATIC

77

Now do a Save as operation, save it for example in mylib/nand2.sch.
To make the schematic nicer we also add the title component. This component is not netlisted but is useful, it reports the
modification date and the author. Place the devices/title.sym component. The NAND gate is completed! (below
picture also with grid, normally disabled in pictures to make image sizes smaller).

CREATING A CIRCUIT SCHEMATIC

78

Normally a cmos gate like the one used in this example is used as a building block (among many others) for bigger
circuits, therefore we need to enclose the schematic view above in a symbol representation.

Automatic symbol creation

XSCHEM has the ability to automatically generate a symbol view given the schematic view. Just press the 'a' bindkey
in the drawing area of the nand2 gate.

After pressing 'OK' a mylib/nand2.sym file is generated. try opening it (File->Open):

As you can see a symbolic view of the gate has been automatically created using the information in the schematic view
(specifically, the input/output pins). Now, this graphic is not really looking like a nand gate, so we may wish to edit it to
make it look better. Delete (by selecting and pressing the Delete key) all the green lines, keep the red pins, the pin
labels and the @symname and @name texts, then draw a nand shape like in the following picture. To allow you to draw
small segments you may need to reduce the snap factor (menu View->Half snap threshold) remember to reset
the snap factor to its default setting when done.

Automatic symbol creation

79

This completes the nand2 component. It is now ready to be placed in a schematic. Open a test schematic (for example
mylib/test.sch (remember to save the nand2.sym you have just created), press the Insert key and locate the
mylib/nand2.sym symbol. Then insert devices/lab_pin.sym components and place wires to connect some
nodes to the newly instantiated nand2 component:

This is now a valid circuit. Let's test it by extracting the SPICE netlist. Enable the showing of netlist window (Options
-> Show netlist win, or 'A' key). Now extract the netlist (Netlist button on the right side of the menu bar, or
'N' key). the SPICE netlist will be shown.

**.subckt test
x1 OUTPUT_Z INPUT_A INPUT_B nand2
**** begin user architecture code
**** end user architecture code
**.ends

* expanding symbol: mylib/nand2 # of pins=3
.subckt nand2 Z A B
*.ipin A
*.opin Z
*.ipin B
m1 Z A net1 VSS nmos w=5u l=0.18u m=1
m2 Z B VCC VCC pmos w=8u l=0.18u m=1
m3 Z A VCC VCC pmos w=8u l=0.18u m=1
m4 net1 B VSS VSS nmos w=5u l=0.18u m=1
**** begin user architecture code
**** end user architecture code
.ends

.GLOBAL VCC

Automatic symbol creation

80

.GLOBAL VSS

.end

This is an example of a hierarchical circuit. The nand2 is a symbol view of another lower level schematic. We may place
multiple times the nand2 symbol to create more complex circuits.

By selecting one of the nand2 gates and pressing the 'e' key or menu Edit -> Push schematic we can 'descend'
into it and navigate through the various hierarchies. Pressing <ctrl>e returns back to the upper level.

Automatic symbol creation

81

This is the corresponding netlist:

**.subckt test
x1 Q SET_BAR QBAR nand2
x2 QBAR CLEAR_BAR Q nand2
**** begin user architecture code
**** end user architecture code
**.ends

* expanding symbol: mylib/nand2 # of pins=3
.subckt nand2 Z A B
*.ipin A
*.opin Z
*.ipin B
m1 Z A net1 VSS nmos w=5u l=0.18u m=1
m2 Z B VCC VCC pmos w=8u l=0.18u m=1
m3 Z A VCC VCC pmos w=8u l=0.18u m=1
m4 net1 B VSS VSS nmos w=5u l=0.18u m=1
**** begin user architecture code
**** end user architecture code
.ends

.GLOBAL VCC

.GLOBAL VSS

.end

The advantage of using hierarchy in circuits is the same as using functions in programming languages; avoid drawing
many repetitive blocks. Also the netlist file will be much smaller.

Automatic Component Wiring

When a new symbol is placed there is a function to connect its pins to auto-named nets: select the symbol, then Press the
'H' key or the Symbol->Attach net labels to component instance menu entry.

The use prefix will prepend the shown prefix to the wire names to be attached to the component. The default value
for the prefix is the instance name followed by an underscore.
The use wire labels will use wire labels instead of pin labels. Wire labels have the text name field offset vertically
to allow a wire to pass through without crossing the wire name. in the picture below, the first component is wired with

Automatic Component Wiring

82

use prefix selected and use wire labels not selected, the second example with use prefix not selected and
use wire labels selected. As you can see in the second example you may draw wires without overstriking the
labels.

Automatic Component Wiring

83

PREV UP NEXT

CREATING SYMBOLS

Creating a subcircuit symbol

Suppose you have just finished creating a circuit and you now want to create a symbol for it so you can use this circuit as
a sub block in other schematics:

Above schematic contains VPP, PLUS, MINUS, VSS, VNN input pins and OUT output pin.
If you press the a key xschem will generate a symbol automatically.

84

If your schematic is called mos_power_amplifier.sch the symbol will be saved in the same place as the schematic
and named mos_power_amplifier.sym.
If you open a new empty schematic and use the Insert or Shift-I key to insert a symbol and select the
mos_power_amplifier.sym you get this:

If you select the symbol instance and press q you see the instance name attribute; the name attribute specifies an unique
name in current schematic. There can not be two x2 instances in a schematic. If you copy the placed instance to get two
of them the new one will be automatically renamed (to x3 or x1, or any available unique name).

 Creating a subcircuit symbol

85

If you descend into the symbol and press q you see the following attributes:

type=subcircuit
format="@name @pinlist @symname"
template="name=x1"

 Creating a subcircuit symbol

86

These attributes are using by xschem to generate the subcircuit netlist line. the format attribute tells xschem that a line
containing the instance name (@name, replaced by x2), the list of attached nets (@pinlist, replaced by the nets
attached to the symbol i/o ports in the order they are declared in the subcircuit) and the symbol name (@symname,
replaced by mos_power_amplifier).
The type attribute tells xschem that the symbol is a subcircuit (not a terminal symbol) and netlister should further
descend into the corresponding schematic to complete the netlist.
The template attribute defines default values for attributes when the symbol is placed in a schematic. For example if
you place an instance of this symbol in an empty schematic the instance name attribute will be set to x1. If there is
already an x1 instance xschem will automatically rename the instance to a unique name.

You can manually edit the symbol to change its shape or change the pin ordering.
If you change the pin positions always move the pin (the red square) and the label together.

If you select one pin (the small red square box) and press 'q' you see the pin attributes:
name specifies the pin name.
dir specifies the pin direction (in, out, inout).
It is good practice to verify that the pin name attribute matches the name of the text label next to it.

If you edit the text label next to a pin the pin name attribute will be changed automatically.

 Creating a subcircuit symbol

87

Creating a new symbol and schematic by cloning

Another useful approach to create a new component (both symbol and schematic view) is to 'clone' it from a similar
existing component: after copying a component to a different place in the schematic, press the edit property bindkey (q
key) and set a new name for the symbol, set also the copy cell checkbox:

After pressing OK a copy (both schematic and symbol views) of the previously selected component will be created. After
this clone operation modifications can be made on the newly created schematic and symbol views without affecting the
original component.

 Creating a new symbol and schematic by cloning

88

for more info on symbols see the Tutorial

 Creating a new symbol and schematic by cloning

89

PREV UP NEXT

COMPONENT PARAMETERS

What makes subcircuits really useful is the possibility to pass parameters. Parametrized subcircuits are like functions with
arguments in a programming language. One single component can be instantiated with different parameters. Recall the
NAND2 gate we designed. It is made of four MOS transistors. A MOS transistor has at least 2 parameter, channel length
(L) and transistor width (W) that define its geometry. we have 2 NMOS transistors and 2 PMOS transistors, so we would
like to have 4 parameters passed to the NAND gate: P-channel with/length (WP/LP) and N-channel with/length
(WN/LN). So open again the mylib/nand2.sch nand gate and replace the w=, l= properties with: w=WN l=LN for
the two NMOS and w=WP l=LP for the two PMOS.

TIP: you can select two PMOS at the same time by clicking the second one with the shift key pressed, so with edit
property 'q' key you will change properties for both.

By doing the same for the NMOS transistors we end up with a schematic with fully parametrized transistor geometry.

90

Now we have to change the mylib/nand2.sym symbol. Save the changes in the nand2 schematic (<shift>S) and
load (Ctrl-o) the nand2 symbol. without selecting anything hit the 'q' key to edit the symbol global property string.
make the changes as shown in the picture.

COMPONENT PARAMETERS

91

The template attribute defines the default values to assign to WN, LN, WP, LP. The format string is updated to pass
parameters, the replacement character @ is used to substitute the parameters passed at component instantiation. You may
also add some descriptive text ('t') so you will visually see the actual value for the parameters of the component:

Now close the modified symbol saving the changes. Let's test the placement of the new modified symbol. Start a new
schematic (menu File -> New) and insert (Insert key) the NAND2 gate. by pressing 'q' you are now able to
specify different values for the geometric parameters:

let's place a second instance (select and 'c' copy key) of the nand gate. set for the second NAND gate different WN, LN,
WP, LP parameters. place some labels on input and outputs and connect the output of the first NAND gate to one of the
inputs of the second NAND gate. Name the pin labels as in the picture using the edit property 'q' key on selected
lab_pin instance

TIP: XSCHEM can automatically place pin labels on a component: just select it and press the Shift-h key.

COMPONENT PARAMETERS

92

now save the new schematic ('s' key, save in mylib/test2.sch) If you enable the netlist window, menu
Options->Show netlist win and press the Netlist button in the menu bar you get the following netlist:

**.subckt test2
x1 Z net1 C nand2 WP=12u LP=0.4u WN=8u LN=0.6u
x2 net1 A B nand2 WP=5u LP=1u WN=3u LN=1.5u
**** begin user architecture code
**** end user architecture code
**.ends

* expanding symbol: mylib/nand2 # of pins=3

.subckt nand2 Z A B WP=8u LP=0.18u WN=5u LN=0.18u
*.ipin A
*.opin Z
*.ipin B
m1 Z A net1 VSS nmos w=WN l=LN m=1
m2 Z B VCC VCC pmos w=WP l=LP m=1
m3 Z A VCC VCC pmos w=WP l=LP m=1
m4 net1 B VSS VSS nmos w=WN l=LN m=1
**** begin user architecture code
**** end user architecture code
.ends

.GLOBAL VCC

.GLOBAL VSS

.end

As you can see there are 2 components placed passing parameters to a nand2 subcircuit. There is complete freedom in
the number of parameters. Any kind parameters can be used in subcircuits as long as the simulator permits these.

COMPONENT PARAMETERS

93

PREV UP NEXT

CREATING A PARAMETRIC SUBCIRCUIT

Let's suppose we want to design an OPAMP macromodel taking the following parameters:

GAIN: The differential maximum small signal gain of the opamp.•
AMPLITUDE: The peak to peak swing of the opamp output.•
OFFSET: the offset of the output when input differential signal is zero.
For example giving AMPLITUDE=10 and OFFSET=5 will result in an output swing from 0 to +10V.

•

ROUT: the output resistance.•
COUT: the output capacitance. Together with ROUT defines a RC time constant (dominant pole).•

Parameters and expressions should be enclosed in curly braces or single quotes:
value={ROUT} or value='ROUT'

The image below shows the circuit. A 'B' voltage-type source with an hyperbolic tangent function is used because it has
continuous derivative and a realistic shape.

after drawing the schematic a symbol is created. The easiest way is to press the 'a' key in the schematic to automatically
create the symbol, then descend into the symbol and do some artwork to reshape it to represent an opamp.
After reshaping the symbol edit its global attributes and add handling of subcircuit parameters in the format and
template attributes as shown below:

94

the symbol has the following global attributes:

type=subcircuit
format="@name @pinlist @symname OFFSET=@OFFSET AMPLITUDE=@AMPLITUDE GAIN=@GAIN ROUT=@ROUT COUT=@COUT"
template="name=x1 OFFSET=0 AMPLITUDE=5 GAIN=100 ROUT=1000 COUT=1p"

The format string defines how the instantiation will look in the spice netlist, The following is the resulting spice netlist
line and how it is generated from the format string:

 x1 REFD DRIVED IN comp_ngspice OFFSET=5 AMPLITUDE=10 GAIN=100 ROUT=1000 COUT=1p
 -- -------------- ------------ -------- ------------ -------- --------- -------
 | | | | | | | |
 | | | | | | | COUT=@COUT
 | | | | | | ROUT=@ROUT
 | | | | | GAIN=@GAIN
 | | | | |
 | | | | AMPLITUDE=@AMPLITUDE
 | | | |
 | | | OFFSET=@OFFSET
 | | @symname
 | |
 | @pinlist
 @name

The template string defines initial values for these parameters when you first instantiate this component:

 template="name=x1 OFFSET=0 AMPLITUDE=5 GAIN=100 ROUT=1000 COUT=1p"

CREATING A PARAMETRIC SUBCIRCUIT

95

As you can see in above image the placed component has instance parameters set to the same values listed in the
template string. You may then change these values according yo your needs. The values set in the instance affect that
specific component instance behavior. Multiple instances can be placed, each with it's own set of parameter values. As
you can see the @param values in the format string are replaced with the actual value set in the instance attributes.

When a netlist is generated the following lines are generated regarding this comp_ngspice symbol:

* sch_path: /home/schippes/xschem-repo/trunk/xschem_library/examples/classD_amp.sch
...
... other components
...
x1 REFD DRIVED IN comp_ngspice OFFSET=5 AMPLITUDE=10 GAIN=100 ROUT=1000 COUT=1p
...
...
* expanding symbol: comp_ngspice.sym # of pins=3
** sym_path: /home/schippes/xschem-repo/trunk/xschem_library/ngspice/comp_ngspice.sym
** sch_path: /home/schippes/xschem-repo/trunk/xschem_library/ngspice/comp_ngspice.sch
.subckt comp_ngspice PLUS OUT MINUS OFFSET=0 AMPLITUDE=5 GAIN=100 ROUT=1000 COUT=1p
*.ipin PLUS
*.ipin MINUS
*.opin OUT
B1 IOUT 0 V = {OFFSET + AMPLITUDE/2*(tanh(V(IPLUS,IMINUS)*GAIN*2/AMPLITUDE))}
R1 OUT IOUT {ROUT} m=1
C3 OUT 0 {COUT} m=1
V1 IPLUS PLUS 0
.save i(v1)
V2 IMINUS MINUS 0
.save i(v2)
.ends
...
...
.end

You see the .subckt line contains the subcircuit parameters and their values: The values present in the .subckt line
are overridden by instance attribute values if given.

CREATING A PARAMETRIC SUBCIRCUIT

96

.subckt comp_ngspice PLUS OUT MINUS OFFSET=0 AMPLITUDE=5 GAIN=100 ROUT=1000 COUT=1p
 ------------ -------------- ---
 | | |
 | | |
 | | parameters from template attributes:
 | | |
 | | ___
 | | template="name=x1 OFFSET=0 AMPLITUDE=5 GAIN=100 ROUT=1000 COUT=1p"
 | port list
 symbol name

CREATING A PARAMETRIC SUBCIRCUIT

97

PREV UP NEXT

EDITOR COMMANDS

Most editing commands are available in the menu, but definitely key-bindings and Mouse actions are the most effective
way to build and arrange schematics, so you should learn at least the most important ones.

INTUITIVE INTERFACE

This is a recent interface that uses less keyboard commands and more mouse actions It is therefore possible to click and
drag objects directly and do many more actions by just using mouse actions. This interface is enabled by enabling the
menu checkbutton:
Options -> Intuitive click & Drag Interface
Or by adding the following line:
set intuitive_interface 1
in your xschemrc file.

The following cheatsheet image shows the intuitive_interface commands

The standard interface is described below. All below description applies also if intuitive_interface is enabled.

STANDARD INTERFACE

The basic principle in XSCHEM is that first you select something in the circuit then you decide what to do with the
selection. For example, if you need to change an object property you first select it (mouse click) and then you press the
edit property ('q') key. It you need to move together multiple objects you select them (by area or using multiple mouse
clicks with the Shift key), then you press the move ('m') key.

EDITOR COMMAND CHEATSHEET

This list is available in XSCHEM in the Help menu

 XSCHEM MOUSE BINDINGS
--
LeftButton Clear selection and select a graphic object
 (line, rectangle, symbol, wire)
 if clicking on blank area: clear selection

shift + LeftButton Select without clearing previous selection

ctrl + LeftButton if an 'url' or 'tclcommand' property is defined on
 selected instance open the url or execute the
 tclcommand

LeftButton drag Select objects by area, clearing previous selection
 "[shift] left button drag" and "[shift] ctrl-left
 button drag" commands are swapped if enable_stretch
 is set.

98

Ctrl + LeftButton drag Select objects by area to perform a
 subsequent 'stretch' move operation

shift + LeftButton drag Select objects by area, without clearing
 previous selection

Shift + Select objects by area without unselecting
Ctrl + LeftButton drag to perform a subsequent 'stretch' move operation

Shift + RightButton Select all connected wires/labels/pins

Ctrl + RightButton Select all connected wires/labels/pins, stopping at
 wire junctions

Alt + RightButton Cut wire at mouse position (creates 2 adjacent wires)
 aligns the cut point to current snap setting.

Alt + Shift + RightButton
 Cut wire at mouse position (creates 2 adjacent wires)
 does not align cut point to current snap setting.

Mouse Wheel Zoom in / out

MidButton drag Pan viewable area

Alt + LeftButton Unselect selected object

Alt + LeftButton drag
 Unselect objects by area

RightButton drag Zoom area

RightButton Release Context menu

LeftButton Double click Terminate Polygon placement
 Edit object attributes

 XSCHEM KEY BINDINGS
--
- BackSpace Back to parent schematic
- Delete Delete selected objects
- Insert Insert element from library
- Print Scrn Grab screen area
- Escape Abort, redraw, unselect
ctrl Enter Confirm closing dialog boxes
- Down Move down
- Left Move right
- Right Move left
- Up Move up
ctrl Left Previous tab (if tabbed interface enabled)
ctrl Right Next tab (if tabbed interface enabled)
- '\' Toggle fullscreen
- '!' Break selected wires at any wire or component pin
 connection
- ' ' Pan schematic
- ' ' When drawing lines or wires toggle between
 manhattan H-V, manhattan V-H or oblique path.
- '#' Highlight components with duplicated name (refdes)
ctrl '#' Rename components with duplicated name (refdes)
- '5' View only probes
ctrl '0-9' set current layer (4 -13)
 '0' set selected net or label to logic value '0'

 EDITOR COMMAND CHEATSHEET

99

 '1' set selected net or label to logic value '1'
 '2' set selected net or label to logic value 'X'
 '3' set selected net or label to logic value 'Z'
 '4' toggle selected net or label: 1->gt;0, 0->gt;1, X->gt;X
- 'a' Make symbol from pin list of current schematic
ctrl 'a' Select all
shift 'A' Toggle show netlist
- 'b' Merge file
Shift 'B' Edit/add header/license metadata to the schematic/symbol file.
ctrl 'b' Toggle show text in symbol
alt 'b' Toggle show symbol details / only bounding boxes
- 'c' Copy selected objects, 'c' and 'alt-c' commands are swapped if enable_stretch is set
Alt 'c' Copy selected objects, insert wires when separating touching instance pins/wires
ctrl 'c' Save to clipboard
shift 'C' Start arc placement
shift+ctrl 'C' Start circle placement
alt 'C' Toggle dim/brite background with rest of layers
shift 'D' Delete files
ctrl 'e' Back to parent schematic
- 'e' Descend to schematic
alt 'e' Edit selected schematic in a new window
 '\' Toggle Full screen
shift 'F' Horizontal flip selected objects
alt 'f' Horizontal flip selected objects around their anchor points
ctrl 'f' Find/select by substring or regexp
- 'f' Full zoom
shift+ctrl 'F' Zoom full selected elements
shift 'G' Double snap factor
- 'g' Half snap factor
ctrl 'g' Set snap factor
alt 'g' Hilight selected nets and send to gaw waveform viewer
- 'h' Constrained horizontal move/copy of objects
alt 'h' create symbol pins from schematic pins
ctrl 'h' Follow http link or execute command (url, tclcommand properties)
shift 'H' Attach net labels to selected instance
ctrl+shift 'H' Make schematic and symbol from selected components
- 'i' Descend to symbol
alt 'i' Edit selected symbol in a new window
alt+shift 'J' Create labels with 'i' prefix from highlighted nets/pins
alt 'j' Create labels without 'i' prefix from highlighted nets/pins
ctrl 'j' Create ports from highlight nets
alt+ctrl 'j' Print list of highlighted nets/pins with label expansion
shift 'J' create xplot plot file for ngspice in simulation directory
 (just type xplot in ngspice)
- 'j' Print list of highlighted nets/pins
- 'k' Hilight selected nets
ctrl+shift 'K' highlight net passing through elements with 'propag' property set on pins
shift 'K' Unhilight all nets
ctrl 'k' Unhilight selected nets
alt 'k' Select all nets attached to selected wire / label / pin.
- 'l' Start line
ctrl 'l' Make schematic view from selected symbol
alt+shift 'l' add lab_wire.sym to schematic
alt 'l' add lab_pin.sym to schematic
ctrl+shift 'o' Load most recent schematic
ctrl 'o' Load schematic
- 'm' Move selected objects. 'm' and 'ctrl-m' commands are swapped if enable_stretch is set
ctrl 'm' Move selected objects, stretching wires attached to them
Alt 'm' Move selected objects, insert wires when separating touching instance pins/wires
shift 'M' Move selected objects, insert wires when separating touching instance pins/wires
ctrl+shift 'M' Move selected objects, combine Shift-M and Ctrl-m
shift 'N' Top level only netlist
- 'n' Hierarchical Netlist
ctrl 'n' Clear schematic

 EDITOR COMMAND CHEATSHEET

100

ctrl+shift 'N' Clear symbol
shift 'O' Toggle Light / Dark colorscheme
ctrl 'o' Load schematic
- 'p' Place polygon. Operation ends by placing last point over first.
alt 'p' Add symbol pin
ctrl 'p' Pan schematic view
shift 'P' Pan, other way to.
alt 'q' Edit schematic file (dangerous!)
- 'q' Edit prop
shift 'Q' Edit prop with vim
ctrl+shift 'Q' View prop
ctrl 'q' Exit XSCHEM
alt 'r' Rotate objects around their anchor points
shift 'R' Rotate
- 'r' Start rect
shift 'S' Change element order
ctrl+shift 'S' Save as schematic
- 's' run simulation (asks confirmation)
ctrl 's' Save schematic
alt 's' Reload current schematic from disk
ctrl+alt 's' Save-as symbol
- 't' Place text
shift 'T' Toggle *_ignore flag on selected instances
alt 'u' Align to current grid selected objects
shift 'U' Redo
- 'u' Undo
- 'v' Constrained vertical move/copy of objects
shift 'V' Vertical flip selected objects
alt 'v' Vertical flip selected objects around their anchor point
ctrl 'v' Paste from clipboard
ctrl+shift 'V' Toggle spice/vhdl/verilog netlist
- 'w' Place wire
ctrl 'w' close current schematic
shift 'W' Place wire, snapping to closest pin or net endpoint
ctrl 'x' Cut into clipboard
- 'x' New cad session
shift 'X' Highlight discrepancies between object ports and attached nets
alt 'x' Toggle draw crosshair at mouse position
- 'y' Toggle stretching wires
- 'z' Zoom box
shift 'Z' Zoom in
ctrl 'z' Zoom out
- '?' Help
- '&' Join / break / collapse wires
shift '*' Postscript/pdf print
ctr+shift '*' Xpm/png print
alt+shift '*' Svg print
 '-' dim colors
ctrl '-' Test mode: change line width
ctrl '+' Test mode: change line width
 '+' brite colors
- '_' Toggle change line width
- '%' Toggle draw grid
ctrl '=' Toggle fill rectangles
- '$' Toggle pixmap saving
ctrl '$' Toggle use XCopyArea vs drawing primitives for drawing the screen
- ':' Toggle flat netlist

 EDITOR COMMAND CHEATSHEET

101

KEYBIND CUSTOMIZATION

changes to default keybindings may be placed in the ~/.xschem/xschemrc file as in the following examples:

replace Ctrl-d with Escape (so you won't kill the program :-))
set replace_key(Control-d) Escape
swap w and W keybinds; Always specify Shift for capital letters
set replace_key(Shift-W) w
set replace_key(w) Shift-W

SELECT OBJECTS

Objects can be selected by clicking the left mouse button when the pointer is very close to the object. For rectangle
objects the best point to select it is the internal side, close to one of the corners. More objects can be selected by pressing
the Shift key and clicking another object. Once objects are selected they can be copied (c key), moved (m key), deleted
(Delete key) or attributes changed (q key).
Objects can also be selected by area, by dragging with the left mouse button pressed a rectangle around the objects you
want to select.

KEYBIND CUSTOMIZATION

102

RESIZE OBJECTS

All Xschem base objects can be resized. For lines, rectangles, polygons you need to drag the mouse with left button
pressed and Ctrl key pressed over one vertex/endpoint.

SELECT OBJECTS

103

After releasing the mouse button the object will become selected and a subsequent move operation (m key) will move the
selected vertex/endpoint.

More objects can be resized. You can add vertex/endpoints by pressing Ctrl and Shift and dragging the mouse to enclose
another vertex/endpoint. After selecting all desired elements pressing the m key will resize all objects.

RESIZE OBJECTS

104

Circles can be resized as well. Capture the center of the circle with the above described mouse drag operation, the radius
can be changed. For arcs you can capture the center (to modify the radius) or the endpoints to change the start/end angle
or the arc angle.

STRETCH OPERATIONS

An important operation that deserves a special paragraph is the Stretch operation. There is frequently the need to move
part of the circuit without breaking connections, for example to create more room for other circuitry or just to make it
look better. The first thing to do is to drag a selection rectangle with the mouse holding down the Ctrl key, cutting wires
we need to stretch:

STRETCH OPERATIONS

105

After selection is done hit the move ('m') key. You will be able to move the selected part of the schematic keeping
connected the wires crossing the selection rectangle:

In our example we needed to move up part of the circuit, the end result is shown in next picture. Multiple stretch
rectangles can be set using the Shift key in addition to the Ctrl key after setting the first stretch area.

STRETCH OPERATIONS

106

Another way to move objects stretching attached wires is to press Ctrl-m instead of m This way you don't have to
remember to press Ctrl when doing the selection.

Pressing Shift-m instead of m will create new wires while moving the selected objects.

PLACE, WIRES MANHATTAN PATHS

When you press the w key a wire placement begins. Moving the mouse a rubber wire is displayed. Clicking the left mouse
button will end the wire placement. If the space bar is pressed you toggle between Horizontal-Vertical,
Vertical-Horizontal and oblique placement mode.

PLACE, WIRES MANHATTAN PATHS

107

PLACE WIRES SNAPPING TO CLOSEST PIN OR NET ENDPOINT

The (uppercase) 'W' bindkey allows to place a wire putting start (and end point, later) to the closest pin or wire endpoint,
this will make it easier to connect precisely without the need to zoom in all times.

CONSTRAINED MOVE

while creating wires, lines, and moving, stretching, copying objects, pressing the 'h' or 'v' keys will constrain the
movement to a horizontal or vertical direction, respectively.

PLACE WIRES SNAPPING TO CLOSEST PIN OR NET ENDPOINT

108

Constrained horizontal move: regardless of the mouse pointer Y position movement occurs on the X direction only.

CONSTRAINED MOVE

109

Unconstrained move: objects follow the mouse pointer in X and Y direction.

POLYGON EDITING COMMANDS

There are some specific editing modes for polygons. A polygon is created by pressing the p key. After dragging the first
segment a mouse button clock will create the second point and so on. A double click ends the placement.
If a polygon is selected the control points are shown with circles. These circles can be dragged with the mouse directly.

POLYGON EDITING COMMANDS

110

Clicking one control point with the Shift key will add a new point in the polygon shape:

Clicking one control point with the Ctrl key will delete a point in the polygon shape.

Adding attribute bezier=true or bezier=1 will transform the polygon into a bezier curve with the polygon points
acting as control points.

POLYGON EDITING COMMANDS

111

POLYGON EDITING COMMANDS

112

PREV UP NEXT

NETLISTING

XSCHEM has 3 predefined netlisting modes, Spice, Verilog and VHDL. Netlisting mode can be set in the Options
menu (Vhdl, Verilog Spice radio buttons) or with the <Shift>V key. Once a netlist mode is set, hitting the
Netlist button on the top-right of the menu bar or the n key will produce the netlist file in the defined simulation
directory.
The simulation directory is one important path that is specified in the xschemrc file with the tcl variable
netlist_dir (default if unset is ~/.xschem/simulations) if netlist_dir is set to empty value (set
netlist_dir {}) xschem will prompt user the first time the netlist is created.
The path where netlists are produced can be changed with the Simulation->Set netlist dir menu entry or
simply by changing the netlist_dir variable, either in the xschemrc file or interactively by giving tcl commands.
If you use xschem interactively by giving tcl commands you may do something like:
set netlist_dir [xschem get current_dirname]/spice; xschem netlist
to have the netlist saved into a spice/ folder into the directory containing the current schematic (this directory is not
necessarily the current directory, like 'pwd'). There is also a local_netlist_dir variable. If this variable is set to 1
(default setting if unspecified is 0) instead of using ~/.xschem/simulations the netlist will be saved in
(directory of current schematic)/simulation The netlist filename is cellname.ext where
cellname is the name of the top-level schematic from which the netlist has been generated, and ext is the file
extension:

spice for spice netlist.•
vhdl for vhdl netlist.•
v for verilog netlist.•

EXAMPLE

Consider the following top level schematic, part of the XSCHEM distribution (examples/poweramp.sch).

113

This schematic is made of some leaf components and some subcircuit components:

leaf: these components are 'known' to the simulator, netlist of these blocks is done by specifying a 'format'
attribute in the symbol property string. Examples of leaf components in the schematic above are voltage sources,
resistors, capacitors, dependent sources. The following are examples of leaf component instantiations in a SPICE
netlist:

c3 VSS VNN 100u m=1
r11 VPP net1 0.3 m=1
r9 VNN net2 0.3 m=1
r19 OUTM FBN '100k' m=1

The format of resistor (and capacitor) SPICE netlist is defined in the format attribute of the symbol global
property:

format="@name @pinlist @value m=@m"

•

subcircuit: these components are not base blocks known to the simulator, but are representation of a more
complex block. These components have in addition to the symbol a schematic representation. In the picture
example the mos_power_ampli is a subcircuit block. These type of components also have a 'format' property
that defines a subcircuit call. A subcircuit call specifies the connections of nets to the symbol pins and the symbol
name. The following two subcircuit calls are present in the SPICE netlist:

•

 EXAMPLE

114

x1 OUTM VSSX FBN VPP VNN VSS mos_power_ampli
x0 OUTP INX FB VPP VNN VSS mos_power_ampli

The format of subcircuit type components is also defined in the symbol format attribute:

format="@name @pinlist @symname"

For subcircuits, after completing the netlist of the top level the XSCHEM' netlister will recursively generate all the netlists
of subcircuit components until leaf schematics are reached that do not instantiate further subcircuits.

...

... (end of top level netlist)

...
* expanding symbol: examples/mos_power_ampli # of pins=6

.subckt mos_power_ampli OUT PLUS MINUS VPP VNN VSS
*.ipin PLUS
*.ipin MINUS
*.ipin VPP
...
...

Other netlist formats

All the concepts explained for SPICE netlist apply for Verilog and VHDL formats. Its up to the designer to ensure that the
objects in the schematic are 'known' to the target simulator. For example a resistor is normally not used in VHDL or
Verilog designs, so unless an appropriate 'format' attribute is defined (for example a rtran device may be good for a
verilog resistor with some limitations). The format attribute for Verilog is called verilog_format and the attribute for
VHDL is vhdl_format
The following example shows two attributes in a NMOS symbol that define the format for SPICE and for Verilog and
some valid default (template) values:

type=nmos
format="@name @pinlist @model w=@w l=@l m=@m"
verilog_format="@verilog_gate #(@del) @name (@@d , @@s , @@g);"
template="name=x1 verilog_gate=nmos del=50,50,50 model=NCH w=0.68 l=0.07 m=1"
generic_type="model=string"

 Other netlist formats

115

PREV UP NEXT

NET PROBES

XSCHEM has the ability to highlight a net and propagate the highlight color to all nets or instance pins attached to the
net. It has the ability to follow this net through the hierarchy. This is very useful in large designs as it makes it easy to see
where a net is driven and were the net goes (fan-out). Highlighting a net is straightforward, click a net and press the 'k'
key. If more nets are selected all nets will be colored with different colors. <Shift>K clears all highlight nets,
<Ctrl>k clears selected nets.

Select some nets...

...press the 'k' key...

116

...all nets are highlighted, select the white net...

NET PROBES

117

..press the <Ctrl>k key and white net is un-highlighted...

NET PROBES

118

if you descend into component instance x1 (mos_power_ampli) ('e' key) you will see the highlight nets propagated into
the child component.

NET PROBES

119

A very useful function is the 'View only probes' mode, ('5' key) that hides everything but the highlight probes. This is
useful in very big VLSI designs to quickly locate start and end point of nets. Pressing again the '5' key restores the
normal view.

NET PROBES

120

NET PROBES

121

PREV UP NEXT

SIMULATION

One of the design goals of XSCHEM is the ability to launch a simulation without additional manual file editing. For this
purpose XSCHEM stores in a schematic not only the circuit but also the simulator settings and the additional files that are
needed. For example there is a devices/netlist.sym and devices/netlist_not_shown.sym symbol that
can be placed in a schematic acting as a container of text files for all the needed SPICE models and any additional
information to make the schematic ready for simulation.

The devices/netlist_not_shown symbol shown in the picture (with name MODELS) for example contains all
the spice models of the components used in the schematic, this makes the schematic self contained, no additional files are
needed to run a simulation. After generating the netlist (for example poweramp.spice) the resulting SPICE netlist can be
sent directly for simulation (for example hspice -i poweramp.spice for the Hspice(TM) simulator).

HELPFUL XTERM CONFIGURATION

By default, xschem runs all simulators in an xterm window. Here is some configuration to make xterm more usable:

enable copy/paste with Ctrl-Shift-C and Ctrl-Shift-V.
set font size to 18.
echo '
XTerm*VT100.Translations: #override \

122

 Ctrl Shift <Key>C: copy-selection(CLIPBOARD) \n\
 Ctrl Shift <Key>V: insert-selection(CLIPBOARD)
xterm*font: *-fixed-*-*-*-18-*
' >> ~/.Xresources

reload the configuration
xrdb -merge ~/.Xresources

VERILOG SIMULATION

This is a tutorial showing how to run a simulation with XSCHEM. The first important thing to note is that XSCHEM is
just a schematic editor, so we need to setup valid bindings to simulators. For this tutorial we plan to do a Verilog
simulation since there is a very good open source simulator available, called Icarus Verilog. There is also a good
waveform viewer called gtkwave that is able to show simulator results. Install these two valuable tools and setup
simulator invocation by using the Simulator configurator (Simulation->Configure Simulators and
tools).

The text entry on the verilog line is the command to invoke icarus verilog simulation. $N will be expanded to the netlist
file ($netlist_dir/greycnt.v), while $n will be replaced with the circuit name without extension
($netlist_dir/greycnt). Note also the command to invoke gtkwave on the vcd file generated by the verilog
simulation. If Save Configuration button is pressed the changes are made permanent by saving in a
~/.xschem/simrc file.

 HELPFUL XTERM CONFIGURATION

123

http://iverilog.icarus.com
https://sourceforge.net/projects/gtkwave

In the XSCHEM distribution there is one example design, examples/greycnt.sch.
Load this design:

user:~$ xschem .../share/doc/xschem/examples/greycnt.sch

This testbench has a 8 bit input vector A[7:0] and two output vectors, B[7:0] and C[7:0]. B[7:0] is a grey coded vector,
this mean that if A[7:0] is incremented as a binary number B[7:0] will increment by changing only one bit at a time. The
C[7:0] vector is the reverse transformation from grey-code to binary, so at the end if simulation goes well C[7:0] ==
A[7:0]. In this schematic there are some components, the first one is the xnor gate, the second one is the assign
element. The 'xnor' performs the logical 'Not-Xor' of its inputs, while 'assign' just propagates the input unchanged to the
output, optionally with some delay. This is useful if we want to change the name of a net (putting two labels with different
names on the same net is not allowed, since this is normally an error, leading to a short circuit).

An Ex-Nor gate can be represented as a verilog primitive, so for the xnor gate we just need to setup a
verilog_format attribute in the global property string of the xnor.sym gate:

 VERILOG SIMULATION

124

the 'assign' symbol is much simpler, in this property string you see the definition for SPICE (format attribute), Verilog
(verilog_format) and VHDL (vhdl_format). This shows how a single symbol can be used for different netlist
formats.

While showing the top-level testbench greycnt set XSCHEM in Verilog mode (menu Options->Verilog radio
button, or <Shift>V key) and press the edit property 'q' key, you will see some verilog code:

 VERILOG SIMULATION

125

This is the testbench behavioral code that generates stimuli for the simulation and gives instructions on where to save
simulation results. If you generate the verilog netlist with the Netlist button on the right side of the menu bar (or n
key) a greycnt.v file will be generated in the simulation directory (${HOME}/xschem_library/simulations
is the default path in the XSCHEM distribution, but can be changed with the set netlist_dir
$env(HOME)/simulations in xschemrc file):

`timescale 1ps/1ps
module greycnt (
 output wire [7:0] B,
 output wire [7:0] C
);

reg [7:0] A ;

xnor #(1 , 1) x2 (B[4] , A[5] , A[4]);
xnor #(1 , 1) x3 (B[5] , A[6] , A[5]);
xnor #(1 , 1) x14 (B[6] , A[7] , A[6]);
assign #1 B[7] = A[7] ;
xnor #(1 , 1) x1 (B[1] , A[2] , A[1]);
xnor #(1 , 1) x4 (B[2] , A[3] , A[2]);
xnor #(1 , 1) x5 (B[3] , A[4] , A[3]);
xnor #(1 , 1) x6 (B[0] , A[1] , A[0]);
xnor #(1 , 1) x7 (C[4] , C[5] , B[4]);
xnor #(1 , 1) x8 (C[5] , C[6] , B[5]);
xnor #(1 , 1) x9 (C[6] , C[7] , B[6]);
assign #1 C[7] = B[7] ;
xnor #(1 , 1) x10 (C[1] , C[2] , B[1]);
xnor #(1 , 1) x11 (C[2] , C[3] , B[2]);
xnor #(1 , 1) x12 (C[3] , C[4] , B[3]);
xnor #(1 , 1) x13 (C[0] , C[1] , B[0]);
initial begin
 $dumpfile("dumpfile.vcd");
 $dumpvars;

 VERILOG SIMULATION

126

 A=0;
end

always begin
 #1000;
 $display("%08b %08b", A, B);
 A=A + 1;
 if(A==0) $finish;
end
endmodule

you will recognize the behavioral code right after the netlist specifying the connection of nets to the xnor and assign gates
and all the necessary verilog declarations. If you press the Simulation button the Icarus Verilog simulator will
be executed to compile (iverilog) and run (vvp) the simulation, a terminal window will show the simulation output, in this
case the input vector A[7:0] and the grey coded B[7:0] vectors are shown. You can quit the simulator log window by
pressing 'q'.

If simulation completes with no errors waveforms can be viewed. Press the Waves button in the top-right of the menu
bar, you may add waveforms in the gtkwave window:

 VERILOG SIMULATION

127

If the schematic contains errors that the simulator can not handle instead of the simulation log a window showing the error
messages from the simulator is shown:

 VERILOG SIMULATION

128

To facilitate the debug you may wish to edit the netlist (Simulation->Edit Netlist) to locate the error, in the
picture below i inserted deliberately a random string to trigger the failure:

As you can see the error is in the behavioral code of the top level greycnt schematic, so edit the global property ('q' key
with no component selected) and fix the error.

 VERILOG SIMULATION

129

 VERILOG SIMULATION

130

PREV UP NEXT

VIEWING SIMULATION DATA WITH XSCHEM

Usually when a spice simulation is done you want to see the results, this is usually accomplished with a waveform viewer.
There are few open source viewers, like GAW...

...Or ngspice internal plotting facilities:

131

https://github.com/StefanSchippers/xschem-gaw

There is also an interesting commercial product from Analog Flavor, called BeSpice (bspwave) that offers a free of
charge one year evaluation license for non commercial use:

VIEWING SIMULATION DATA WITH XSCHEM

132

https://www.analogflavor.com/en/bespice/

All these waveform viewers are supported by xschem and more can be added, just by giving the command line to start the
viewer to xschem in the Simulation-> Configure simulators and tools dialog:

VIEWING SIMULATION DATA WITH XSCHEM

133

For gaw and bespice xschem can automatically send nets to the viewer by clicking a net on the schematic and pressing the
Alt-G key bind or by menu Hilight->Send selected nets/pins to Viewer

Using XSCHEM's internal graph functions

Xschem can now display waveforms by itself in the drawing area. in the Simulation menu there is an entry to add a graph:
Graph -> Add waveform graph. When this menu is pressed a box can be placed in the schematic:

Using XSCHEM's internal graph functions

134

https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/probe_to_bespice.mp4

Xschem graphs are embedded into a rectangle object. Resizing graphs is done in the same way as resizing a rectangle
object. See the related page. To select a graph (to delete it or move it to a different position) click the left mouse button
while in the area shown in this picture:

Using XSCHEM's internal graph functions

135

The next step is loading the simulation data, This is done by menu Waves->Op | Ac | Dc | Tran | Tran |
Noise | Sp . This command loads the user selected .raw file produced by a ngspice/Xyce simulation.

Ensure the circuit.raw is saved in binary format (no set filetype=ascii in your testbench)

The raw file is usually located in the simulation/netlisting directory Simulation ->set netlist dir.
After placing a graph box and loading simulation data a wave can be added. If you place the mouse on the inside of the
box, close to the bottom/left/right edges and click the graph will be selected. You can also select a graph by dragging a
selection rectangle all around it. This tells xschem where new nodes to be plotted will go, in case you have multiple
graphs. Then, select a node or a net label, press 'Alt-G', the net will be added to the graph. Here after a list of commands
you can perform in a graph to modify the viewport. These commands are active when the mouse is Inside the graph (you
will notice the mouse pointer changing from an arrow to a +). if the mouse is outside the graph the usual Xschem
functions will be available to operate on schematics:

Pressing f with the mouse in the middle of the graph area will do a full X-axis zoom.•
Pressing f with the mouse on the left of the Y axis will do a full Y-axis zoom.•
Pressing Left/Right or Up/Down arrow keys while the mouse is inside a graph will move the waveforms to
the left/right or zoom in/zoom out respectively.

•

Pressing Left/Right or Up/Down arrow keys while the mouse is on the left of the Y-axis will move the
waveforms or zoom in/zoom out in the Y direction respectively.

•

Pressing the left mouse button while the pointer is in the center of the graph will move the waves left or right
following the pointer X movement.

•

Pressing the left mouse button while the pointer is on the left of the Y-axis will move the waves high or low
following the pointer Y movement.

•

Doing the above with the Shift key pressed will zoom in/out instead of moving.•
pressing a and/or b will show a vertical cursor. The sweep variable difference between the a and the b cursor is
shown and the values of all signals at the X position of the a cursor is shown.

•

Double clicking the left mouse button with the pointer above a wave label will allow to change its color.•
Pressing the right mouse button with the pointer above a wave label will show it in bold.•
Double clicking the left mouse button with the pointer in the middle of the graph will show a configuration
dialog box, where you can change many graph parameters.

•

Pressing the right mouse button in the graph area and dragging some distance in the X direction will zoom in
the waveforms to that X range.

•

Using XSCHEM's internal graph functions

136

The graph configuration dialog box which is shown by left button double clicking inside the graph, allows to change
many graph attributes, like number of X/Y labels, minor ticks, wave colors, add waves from the list of waves found in the
raw file, select the dataset to show in case of multiple sweep simulations and more.

The text area with the colored wave names is just a text widget. You can manually edit it to add / remove waves, or you
can place the cursor somewhere in the text, select some waves from the listbox on the left, press the Add button to have
these waves added. If you place the insertion cursor in the middle of a node name in the text area, you can click the color
radio buttons on the bottom to change the color. The Search entry can be used to restrict the list of nodes displayed in
the listbox. The Search entry supports regular expression patterns. For example, ^X will match all nodes that begin with

Using XSCHEM's internal graph functions

137

X, xm[0-9]\. will match all nodes containing xm followed by one digit and a dot.

Display bus signals

If you have a design where digital signals are present you might want to group some of these to form a bus and display
these bundled signals. After placing a graph box and loading the simulation data as explained above, left-double click the
graph to show the configuration dialog, check the bus and digital check boxes, use the Search text entry to restrict
the list of signals, then select all the signals you want to show as a bus and click the Add button. Also set the Min
value and the Max value of the signals in the bus. This information is needed by Xschem to calculate the logic high
and logic low thresholds. Currently the logic '1' is set at 80% of the signal min-max range and the logic '0' level is set at
20% of the signal range. After pressing the Add button a bus is shown in the text area. The first field is a template
BUS_NAME that you should change to give a meaningful name to the bus. The bus name is separated from the rest of bits
by a , or ; character.

You will then see your bussed signal in the graph:

Display bus signals

138

If you have bussed signals in the schematic , like LDA[12:0] and your graph has the Digital and Bus checkboxes
set you can simply add the LDA bus to the graph by clicking the net in the schematic (with the configuration dialog open)
and pressing Alt-G:

Display bus signals

139

You can add many signals to see them stacked in a very compact view:

Display bus signals

140

It is possible to switch the graph to analog mode, by unchecking the Digital checkbox in the graph configuration
dialog, to better see the waveforms. Switching back to Digital yields the previous view. In analog mode buses are not
shown, but are not lost. You will see them again when switching back to Digital mode.

Many graphs can be created in a schematic, and the configuration of all graphs (viewport, list of signals, colors) is saved
together with the schematic. If you re-run a simulation just unloading/loading the data from the simulation menu will
update the waveforms.

Display bus signals

141

Expression evaluation on waves

It is possible to enter math expressions combining simulation data, for example multiply current and voltage to get the
power. The syntax of expressions uses postfix (RPN) notation. When entering an expression use double quotes in the
graph edit attribute dialog box, so the expression will be considered as a single new wave to display. Operands are loaded
onto a stack like structure and then evaluated. The syntax is:
"alias_name;operand operand operator ..."
Example:
"supply power;i(vcurrvnn) vnn * i(vcurrvpp) vpp * +"
that means: i(vcurrvnn) * vnn + i(vcurrvpp) * vpp.
"i(vcurrvnn) 1e6 *"
that means: i(vcurrvnn) * 1e6.

Expression evaluation on waves

142

The optional alias_name is just a string to display as the wave label instead of the whole expression. The following
operators are defined:
3 argument operators:

? Conditional expression: X cond Y ? --> return X if cond = 1 else Y•

2 argument operators:

+ Addition•
- Subtraction•
* Multiplication•
/ Division•
< Lower than•
> Greater than•
== Equal•
!= Not equal•
<= Lower or equal•
>= Greater or equal•
== Equal•
== Equal•
** Exponentiation•
max() Take the maximum of the two operators•
min() Take the minimum of the two operators•
exch() Exchange top 2 operands on stack•

Expression evaluation on waves

143

ravg() Running average of over a specified time window•
del() Delete waveform by specified quantity on the X-axis•
re() Return real part of complex number specified as magnitude and phase (in deg)•
im() Return imaginary part of complex number specified as magnitude and phase (in deg)•

1 argument operators:

sin() Trig. sin function•
cos() Trig. cos function•
tan() Trig. tan function•
sinh() Hyp. sin function•
cosh() Hyp. cos function•
tanh() Hyp. tan function•
asinh() Inv hyp. sin function•
acosh() Inv hyp. cos function•
atanh() Inv hyp. tan function•
asin() Inverse trig. sin function•
acos() Inverse trig. cos function•
atan() Inverse trig. tan function•
cph() Continuous phase. Instead of [-180, +180] discontinuities make phase continuous•
sqrt() Square root•
sgn() Sign•
abs() Absolute value•
exp() Base-e Exponentiation•
ln() Base-e logarithm•
log10() Base 10 logarithm•
idx() point number (0, 1, 2, ...) in vector•
db20() Value in deciBel (20 * log10(n))•
avg() Average•
prev() Delay waveform by one point (at any x-axis position take the previous value)•
deriv() Derivative w.r.t. graph sweep variable•
deriv0() Derivative w.r.t. simulation (index 0) sweep variable•
integ() Integration•
dup() Duplicate last element on stack•

Display a specific dataset for a node

The following syntax: node%n where node is a saved node or a bus or an expression and n is an integer number will
plot only the indicated dataset number. Dataset numbers start from 0. This syntax is accepted for single nodes, bus names
and expressions:

"DATA_4; en, cal, saout % 4"
saout%3
"Power dataset 6; I(VVCC) VCC * %6"

Display a specific dataset for a node

144

Specify a different raw file in a graph

It is now possible (xschem 3.4.5+) to load more raw files for a schematic in xschem.
Each graph may optionally refer to a different raw file. If you double click on a graph while waveforms are loaded you
see the graphdialog dialog box:

Specify a different raw file in a graph

145

The dialog box has now a simulation type listbox and a Raw file: text entry box. Specifying an existing .raw file
name and a simulation type from the listbox will override the 'base' raw file loaded in xschem. (the 'base' raw file is the
only one that was loaded previously and applied to all graphs) If no raw file is specified in a graph it will use the loaded
'base' raw file if any, like it used to work before. It is also possible to have multiple graphs all referring to the same raw
file, each graph showing a different simulation. It is for example possible to show a dc, tran, ac simulation all loaded from
a common .raw file. Image below shows an example: DC, AC, Transient simulation each one done with 3 runs varying
the Bias current. In addition the xschem annotate_op is also used to annotate the operating point into the schematic.
Ctrl-Left-button-clicking the Backannotate launcher will instantly update all graphs with data taken from the updated
raw file(s).

Specify a different raw file in a graph

146

Specify a different raw file for a single signal in a graph

The general syntax for a signal in a graph is the following:
"alias_name; signal_name % dataset# raw_file sim_type
where:
dataset# is the dataset index to display (only meaningful and needed if multiple datasets are present like in Montecarlo
/ Mismatch simulations). If empty or -1 then show all datasets.
raw_file is the location and name of the raw file to load. You can use $netlist_dir to quickly reference the
simulation directory where usually such raw files are located.
sim_type is the simulation type, like ac, sp, spectrum, dc, op, tran, noise.
Example:
"SAOUT; saout % 2 $netlist_dir/autozero_comp.raw tran

Specify a different raw file for a single signal in a graph

147

Change sweep variable

The graph dialog box has a Sweep textbox where you can write the X-axis variable. By default xschem uses the first
variable in the raw file for the X-axis, and this is the sweep variable the simulation was done, so time for transients,
frequency for AC sims, voltage or current sweep for DC sims. Example below shows a cmos latch where a DC simulation
has been done sweeping the voltage generator on the a input from 0 to 3V.

Change sweep variable

148

If v(a) v(z) is specified in the Sweep textbox (or a z) the z signal will be plotted vs a and the a signal will be
plotted vs z.

Change sweep variable

149

Change sweep variable

150

PREV UP NEXT

DEVELOPER INFO

GENERAL INFORMATION

XSCHEM uses layers for its graphics, each layer is a logical entity defining graphic attributes like color and fill style.
There are very few graphical primitive objects:

Lines1.
Rectangles2.
Open / close Polygons3.
Arcs / Circles4.
Text5.

These primitive objects can be drawn on any layer. XSCHEM number of layers can be defined at compile time, however
there are some predefined layers (from 0 to 5) that have specific functions:

Background color0.
Wire color (nets)1.
Selection color / grid2.
Text color3.
Symbol drawing color4.
Pin color5.
General purpose6.
General purpose7.
General purpose8.

....

General purpose20.
General purpose21.

Although any layer can be used for drawing it is strongly advisable to avoid the background color and the selection color
to avoid confusion. Drawing begins by painting the background (layer 0), then drawing the grid (layer 1) then drawing
wires (nets) on layer 2, then all graphical objects (lines, rectangles, polygons) starting form layer 0 to the last defined
layer.

SYMBOLS

There is a primitive object called symbol. Symbols are just a group of primitive graphic objects (lines, polygons,
rectangles, text) that can be shown as a single atomic entity. Once created a symbol can be placed in a schematic. The
instantiation of a symbol is called 'component'.

151

The above picture shows a resistor symbol, built drawing some lines on layer 4 (green), some pins on layer 5 (red) and
some text. Symbols once created are stored in libraries (library is just a UNIX directory known to XSCHEM) and can be
placed like just any other primitive object multiple times in a schematic window with different orientations.

SYMBOLS

152

WIRES

Another special primitive object in XSCHEM is 'Wire', Graphically it is drawn as a line on layer 1 (wires). Wires are
drawn only on this layer, they are treated differently by XSCHEM since they carry electrical information. Electrical
connection between components is done by drawing a connecting wire.

Since wires are used to build the circuit connectivity it is best to avoid drawing lines on layer 1 to avoid confusion, since
they would appear like wires, but ignored completely for electrical connectivity.

PROPERTIES

All XSCHEM objects (wires, lines, rectangles, polygons, text, symbol instance aka component) have a property string
attached. Any text can be present in a property string, however in most cases the property string is organized as a set of
key=value pairs separated by white space. In addition to object properties the schematic or symbol view has global
properties attached. There is one global property defined per netlisting mode (currently SPICE, VHDL, Verilog, tEDAx)
and one additional global property for symbols (containing the netlisting rules usually). See the XSCHEM properties
section of the manual for more info.

COORDINATE SYSTEM

XSCHEM coordinates are stored as double precision floating point numbers, axis orientation is the same as Xorg default

WIRES

153

coordinate orientation:

When drawing objects in XSCHEM coordinates are snapped to a multiple of 10.0 coordinate units, so all drawn objects
are easily aligned. The snap level can be changed to any value by the user to allow drawing small objects if desired. Grid
points are shown at multiples of 20.0 coordinate units, by default.

XSCHEM FILE FORMAT SPECIFICATION

XSCHEM schematics and symbols are stored in .sch and .sym files respectively. The two file formats are identical, with
the exception that symbol (.sym) files usually do not contain wires and component instantiations (although they can).

every schematic/symbol object has a corresponding record in the file. A single character at the beginning of a line,
separated by white space from subsequent fields marks the type of object:

v : XSCHEM Version string•

COORDINATE SYSTEM

154

S : Global property associated to the .sch file for SPICE netlisting•
V : Global property associated to the .sch file for VERILOG netlisting•
G : Global property associated to the .sch file for VHDL netlisting OR Global property associated to the .sym file
for netlisting (in 1,2 file format K is used, although backward compatibility is guaranteed)

•

E : Global property associated to the .sch file for tEDAx netlisting•
K : Global property associated to the .sch/sym file for netlisting.
For schematic it is used if instantiated as a component (file format 1.2 and newer)

•

L : Line•
B : Rectangle•
P : Open / Closed polygon•
A : Arc / Circle•
T : Text•
N : Wire, used to connect together components (only in .sch files)•
C : Component instance in a schematic (only in .sch files)•
[: Start of a symbol embedding, the symbol refers to the immediately preceding component instance. This tag
must immediately follow a component instance (C). See the example here under. A component symbol is
embedded into the schematic file when saving if the embed=true attribute is set on one of the component
instances. Only one copy of the embedded symbol is saved into the schematic and all components referring to this
symbol will use the embedded definition. When a component has an embedded symbol definition immediately
following, a embed=true is added to the component property string if not already present.

•

C {TECHLIB/PCH} 620 -810 0 0 {name=x5 model=PCHLV w=4 l=0.09 m=1 embed=true}
[
v {xschem version=2.9.7 file_version=1.2}
G {}
K {type=pmos
format="@name @pinlist @model w=@w l=@l m=@m"
verilog_format="@verilog_gate #(@del) @name (@@d , @@s , @@g);"
template=" name=x1 verilog_gate=pmos del=50,50,50 model=PCH w=0.68 l=0.07 m=1 "
generic_type="model=string"
}
V {}
S {}
E {}
L 4 5 20 20 20 {}
L 4 20 20 20 30 {}
L 4 5 -20 20 -20 {}
L 4 20 -30 20 -20 {}
L 4 -20 0 -10 0 {}
L 4 5 -27.5 5 27.5 {11}
L 4 5 -5 10 0 {}
L 4 5 5 10 0 {}
L 4 10 0 20 0 {}
L 18 -2.5 -15 -2.5 15 {}
B 5 17.5 27.5 22.5 32.5 {name=d dir=inout}
B 5 -22.5 -2.5 -17.5 2.5 {name=g dir=in}
B 5 17.5 -32.5 22.5 -27.5 {name=s dir=inout}
B 5 17.5 -2.5 22.5 2.5 {name=b dir=in}
A 4 -6.25 0 3.75 270 360 {}
T {@w/@l*@m} 7.5 -17.5 0 0 0.2 0.2 {}
T {@name} 7.5 6.25 0 0 0.2 0.2 {999}
T {@model} 2.5 -27.5 0 1 0.2 0.2 {layer=8}
T {D} 25 17.5 0 0 0.15 0.15 {layer=13}
T {NF=@nf} -5 -15 0 1 0.15 0.15 {}
]

XSCHEM FILE FORMAT SPECIFICATION

155

] : End of an embedded symbol.•

the object tag in column 1 is followed by space separated fields that completely define the corresponding object.

VERSION STRING

Example:
v {xschem version=2.9.7 file_version=1.2}

Two attributes are defined, the xschem version and the file format version. Current file format version is 1.2. This string is
guaranteed to be the first one in XSCHEM .sch and .sym files. A comment can be added (by manually editing the xschem
schematic or symbol file) as shown below:

v {xschem version=3.1.0 file_version=1.2
* Copyright 2022 Stefan Frederik Schippers
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
}

GLOBAL SCHEMATIC/SYMBOL PROPERTIES

Example:
K {type=regulator
format="x@name @pinlist r@symname"
verilog_format="assign @#2 = @#0 ;"
tedax_format="footprint @name @footprint
device @name @symname"
template="name=U1 footprint=TO220"}

Global properties define a property string bound to the parent schematic/symbol file, there is one global property record
per netlisting mode, currently SPICE, VHDL, Verilog, tEDAx.
In addition (only in file_format 1.2 and newer) for schematics and symbols there is a global attribute ('K') that defines
how to netlist the schematic/symbol if placed as a symbol into another parent schematic (should be set in the same way as
the 'G' global attribute for symbols in pre-1.2 file format). Normally only 'G' ('K' in 1.2 file format) type property strings
are used for symbols and define attributes telling netlisters what to do with the symbol, while global property strings in
schematic files corresponding to the active netlisting mode of XSCHEM are copied verbatim to the netlist.
the object tag (S, V, G, E, K) is followed by the property string enclosed in curly braces ({...}). This allows strings to
contain any white space and newlines. Curly braces if present in the string are automatically escaped with the '\' character
by XSCHEM when saving data.
Example of the 4 property string records for a schematic file:
G {}
V {assign #1500 LDOUT = LDIN +1;
}

VERSION STRING

156

E {}
S {}
in this case only the verilog-related global property has some definition. This is Verilog code that is copied into the output
netlist.

Attribute strings for all Xschem objects are enclosed in curly braces. This allows attributes to span multiple lines. This
component instance:
C {capa.sym} 890 -160 0 0 {name=C4 m=1 value=10u device="tantalium capacitor"}
and this one:
C {capa.sym} 890 -160 0 0 {name=C4
m=1 value=10u
device="tantalium capacitor"
}
are perfectly equivalent.

TEXT OBJECT

Example: T {3 of 4 NANDS of a 74ls00} 500 -580 0 0 0.4 0.4 {font=Monospace layer=4}
This line defines a text object, the first field after the type tag is the displayed text, followed by X and Y
coordinates,rotation, mirror, horizontal and vertical text size and finally a property string defining some text attributes.

The displayed text is enclosed in curly braces ({...}) to allow white space. Literal curly braces must be escaped
if present in the saved string. XSCHEM will automatically add the escapes where needed on save.

•

X ad Y coordinates are saved and retrieved as double precision floating point numbers.•
Rotation and mirror are integers (range [0:3], [0:1] respectively) that define the orientation of text objects. Using
rotation and mirror text can be aligned to any corner of its bounding box, so there are 4 different alignments for
vertical text and 4 different alignments for horizontal text. Below picture shows how text is displayed with respect
to its anchor point.

•

text X and Y sizes are stored as floating point numbers.•
Finally a property string is available to attach attributes to the text object. Currently the following attributes are
predefined for text objects:

•

GLOBAL SCHEMATIC/SYMBOL PROPERTIES

157

font Name of font to be used (ex: font=Arial)♦
layer Number of layer to use for drawing (as in Xschem Layers menu)♦
hcenter If set to true horizontal center text♦
vcenter If set to true vertical center text♦
weight If set to bold use bold style♦
slant If set to italic or oblique use that style for text♦
hide If set to true text will be hidden unless View->Show hidden texts is enabled
If hide=instance is given the text will be invisible in placed instances of the symbol, but visible
when descending into the symbol.

♦

WIRE OBJECT

Example: N 890 -130 890 -110 {lab=ANALOG_GND}
Format: N x1 y1 x2 y2 {attributes}
The net 'N' tag is followed by the end point coordinates x1,y1 - x2,y2. (stored and read as double precision numbers) and
a property string, used in this case to name the net. In most cases you don't need to specify attributes for nets (one
exception is the bus attribute) as the lab attribute is set by xschem when creating a netlist or more generally when
building the connectivity. This means that almost always nets in a xschem schematic are set as in following example:
N 890 -130 890 -110 {}
Xschem schematic files store only geometrical data and attributes of the graphic primitives, the connectivity and the
logical network is obtained by xschem.

LINE OBJECT

Example: L 4 -50 20 50 20 {This is a line on layer 4}
Format: L layer x1 y1 x2 y2 {attributes}
The line 'L' tag is followed by an integer specifying the graphic layer followed by the x1,y1 - x2,y2 coordinates of the line
and a property string.

RECTANGLE OBJECT

Example: B 5 -62.5 -2.5 -57.5 2.5 {name=IN dir=in pinnumber=1}
Format: B layer x1 y1 x2 y2 {attributes}
The 'Box' 'B' tag is followed by an integer specifying the graphic layer followed by the x1,y1 - x2,y2 coordinates of the
rectangle and a final property string. This example defines a symbol pin.
A fill=true attribute may be given get a patterned fill (this is the default for rectangles).
A fill=false attribute may be given to avoid a fill pattern.
A fill=full attribute may be given to get a full solid fill.
Example: B 4 100 -300 400 100 {fill=false}

OPEN / CLOSED POLYGON OBJECT

Example: P 3 5 2450 -210 2460 -170 2500 -170 2510 -210 2450 -210 {}
Format: P layer npoints px1 py1 px2 py2 {attributes}
the Polygon 'P' tag is followed by an integer specifying the layer number, followed by the number of points (integer), the
x,y coordinates of the polygon points and the property string (empty in this example). If the last point is coincident to the
first point a closed polygon is drawn. A fill=true attribute may be given to fill a closed polygon, in this case a
polygon line looks like:
P 3 5 2450 -210 2460 -170 2500 -170 2510 -210 2450 -210 {fill=true}
A fill=full attribute will paint the polygon with a solid full color (instead of a patterned fill).

TEXT OBJECT

158

A bezier=true attribute will transform the polygon into a bezier curve. See the editor commands page on polygons.

ARC OBJECT

Example: A 3 450 -210 120 45 225 {}
Format: A x y r a b {attributes}
The Arc 'A' tag is followed by an integer specifying the layer number, followed by the arc x, y center coordinates, the arc
radius, the start angle (measured counterclockwise from the three o'clock direction), the arc sweep angle (measured
counterclockwise from the start angle) and the property string (empty in this example). Angles are measured in degrees.
Arcs can be filled or not:
A fill=true attribute may be given get a patterned fill.
A fill=false attribute may be given to avoid a fill pattern. This is the default
A fill=full attribute may be given to get a full solid fill.
Circles are just arcs with a sweep angle of 360 degrees.
Example: A 4 100 -40 40 0 360 {fill=full}

OPEN / CLOSED POLYGON OBJECT

159

COMPONENT INSTANCE

Example: C {capa.sym} 890 -160 0 0 {name=C4 m=1 value=10u device="tantalium
capacitor"}
Format: C {<symbol reference>} <X coord> <Y coord> <rotation> <flip> {<attributes>}
The component instance tag C is followed by a string specifying library/symbol or only symbol (see This tutorial
about symbol references) followed by the x,y coordinates, rotation (integer range [0:3]), mirror (integer range [0:1]), and
a property string defining various attributes including the mandatory name=... attribute.
Orientation and mirror meanings are as follows:

EXAMPLE OF A COMPLETE SYMBOL FILE (7805.sym)

G {}
K {type=regulator
format="x@name @pinlist r@symname"
verilog_format="assign @#2 = @#0 ;"
tedax_format="footprint @name @footprint
device @name @symname"
template="name=U1 footprint=TO220"}
V {}
S {}
E {}
L 4 -60 0 -50 0 {}
L 4 50 0 60 0 {}
L 4 -50 -20 50 -20 {}
L 4 50 -20 50 20 {}
L 4 -50 20 50 20 {}
L 4 -50 -20 -50 20 {}
L 4 0 20 0 30 {}
B 5 -62.5 -2.5 -57.5 2.5 {name=IN dir=in pinnumber=1}
B 5 -2.5 27.5 2.5 32.5 {name=GND dir=inout pinnumber=2}
B 5 57.5 -2.5 62.5 2.5 {name=OUT dir=out pinnumber=3}
T {@name} -17.5 -15 0 0 0.2 0.2 {}
T {@symname} -17.5 0 0 0 0.2 0.2 {}

COMPONENT INSTANCE

160

T {@#0:pinnumber} -47.5 -2.5 0 0 0.12 0.12 {}
T {@#1:pinnumber} -2.5 12.5 0 0 0.12 0.12 {}
T {@#2:pinnumber} 47.5 -2.5 0 1 0.12 0.12 {}

EXAMPLE OF A COMPLETE SCHEMATIC FILE (pcb_test1.sch)

G {}
K {}
V {}
S {}
E {}
B 20 270 -550 860 -290 {}
T {3 of 4 NANDS of a 74ls00} 500 -580 0 0 0.4 0.4 {}
T {EXPERIMENTAL schematic for generating a tEDAx netlist
1) set netlist mode to 'tEDAx' (Options menu -> tEDAx netlist)
2) press 'Netlist' button on the right
3) resulting netlist is in pcb_test1.tdx } 240 -730 0 0 0.5 0.5 {}
N 230 -330 300 -330 {lab=INPUT_B}
N 230 -370 300 -370 {lab=INPUT_A}
N 680 -420 750 -420 {lab=B}
N 680 -460 750 -460 {lab=A}
N 400 -350 440 -350 {lab=B}
N 850 -440 890 -440 {lab=OUTPUT_Y}
N 230 -440 300 -440 {lab=INPUT_F}

EXAMPLE OF A COMPLETE SYMBOL FILE (7805.sym)

161

N 230 -480 300 -480 {lab=INPUT_E}
N 400 -460 440 -460 {lab=A}
N 550 -190 670 -190 {lab=VCCFILT}
N 590 -130 590 -110 {lab=ANALOG_GND}
N 790 -190 940 -190 {lab=VCC5}
N 890 -130 890 -110 {lab=ANALOG_GND}
N 730 -110 890 -110 {lab=ANALOG_GND}
N 730 -160 730 -110 {lab=ANALOG_GND}
N 590 -110 730 -110 {lab=ANALOG_GND}
N 440 -460 680 -460 {lab=A}
N 500 -420 680 -420 {lab=B}
N 500 -420 500 -350 {lab=B}
N 440 -350 500 -350 {lab=B}
C {title.sym} 160 -30 0 0 {name=l2 author="Stefan"}
C {74ls00.sym} 340 -350 0 0 {name=U1:2 risedel=100 falldel=200}
C {74ls00.sym} 790 -440 0 0 {name=U1:1 risedel=100 falldel=200}
C {lab_pin.sym} 890 -440 0 1 {name=p0 lab=OUTPUT_Y}
C {capa.sym} 590 -160 0 0 {name=C0 m=1 value=100u device="electrolitic capacitor"}
C {74ls00.sym} 340 -460 0 0 {name=U1:4 risedel=100 falldel=200 power=VCC5
url="http://www.engrcs.com/components/74LS00.pdf".sym}
C {LM7805.pdf"}
C {lab_pin.sym} 490 -190 0 0 {name=p20 lab=VCC12}
C {lab_pin.sym} 940 -190 0 1 {name=p22 lab=VCC5}
C {lab_pin.sym} 590 -110 0 0 {name=p23 lab=ANALOG_GND}
C {capa.sym} 890 -160 0 0 {name=C4 m=1 value=10u device="tantalium capacitor"}
C {res.sym} 520 -190 1 0 {name=R0 m=1 value=4.7 device="carbon resistor"}
C {lab_wire.sym} 620 -460 0 0 {name=l3 lab=A}
C {lab_wire.sym} 620 -420 0 0 {name=l0 lab=B}
C {lab_wire.sym} 650 -190 0 0 {name=l1 lab=VCCFILT}
C {connector.sym} 230 -370 0 0 {name=CONN1 lab=INPUT_A verilog_type=reg}
C {connector.sym} 230 -330 0 0 {name=CONN2 lab=INPUT_B verilog_type=reg}
C {connector.sym} 240 -190 0 0 { name=CONN3 lab=OUTPUT_Y }
C {connector.sym} 230 -480 0 0 {name=CONN6 lab=INPUT_E verilog_type=reg}
C {connector.sym} 230 -440 0 0 {name=CONN8 lab=INPUT_F verilog_type=reg}
C {connector.sym} 240 -160 0 0 { name=CONN9 lab=VCC12 }
C {connector.sym} 240 -130 0 0 { name=CONN14 lab=ANALOG_GND verilog_type=reg}
C {connector.sym} 240 -100 0 0 { name=CONN15 lab=GND verilog_type=reg}
C {code.sym} 1030 -280 0 0 {name=TESTBENCH_CODE only_toplevel=false value="initial begin
 $dumpfile(\\"dumpfile.vcd\\");
 $dumpvars;
 INPUT_E=0;
 INPUT_F=0;
 INPUT_A=0;
 INPUT_B=0;
 ANALOG_GND=0;
 #10000;
 INPUT_A=1;
 INPUT_B=1;
 #10000;
 INPUT_E=1;
 INPUT_F=1;
 #10000;
 INPUT_F=0;
 #10000;
 INPUT_B=0;
 #10000;
 $finish;
end

assign VCC12=1;

"}
C {verilog_timescale.sym} 1050 -100 0 0 {name=s1 timestep="1ns" precision="1ns" }

EXAMPLE OF A COMPLETE SCHEMATIC FILE (pcb_test1.sch)

162

XSCHEM COMMAND REFERENCE DOCUMENTATION

The following are xschem specific tcl commands. All commands are prefixed by the xschem keyword.
Example:

xschem getprop instance x3 OFFSET

abort_operation•

 Resets UI state, unselect all and abort any pending operation

add_symbol_pin [x y name dir [draw]]•

 place a symbol pin.
 x,y : pin coordinates
 name = pin name
 dir = in|out|inout
 draw: 1 | 0 (draw or not the added pin immediately, default = 1)
 if no parameters given start a GUI placement of a symbol pin

XSCHEM COMMAND REFERENCE DOCUMENTATION

163

add_graph•

 Start a GUI placement of a graph object

add_image•

 Ask user to choose a png/jpg file and start a GUI placement of the image

align•

 Align currently selected objects to current snap setting

annotate_op [raw_file] [level]•

 Annotate operating point data into current schematic.
 use <schematic name>.raw or use supplied argument as raw file to open
 look for operating point data and annotate voltages/currents into schematic.
 The optional 'level' integer specifies the hierarchy level the raw file refers to.
 This is necessary if annotate_op is called from a sub schematic at a hierarchy
 level > 0 but simulation was done at top level (hierarchy 0, for example)

arc•

 Start a GUI placement of an arc.
 User should click 3 unaligned points to define the arc

attach_labels•

 Attach net labels to selected component(s) instance(s)

bbox begin|end•

 Start/end bounding box calculation: parameter is either 'begin' or 'end'

break_wires [remove]•

 Break wires at selected instance pins
 if '1' is given as 'remove' parameter broken wires that are
 all inside selected instances will be deleted

build_colors•

 Rebuild color palette using values of tcl vars dim_value and dim_bg

callback winpath event mx my key button aux state•

 Invoke the callback event dispatcher with a software event

case_insensitive 1|0•

 Set case insensitive symbol lookup. Use only on case insensitive filesystems

change_elem_order n•

 set selected object (instance, wire, line, rect, ...) to
 position 'n' in its respective array

XSCHEM COMMAND REFERENCE DOCUMENTATION

164

change_sch_path n <draw>•

 if descended into a vector instance change inst number we are into to 'n',
 (same rules as 'descend' command) without going up and descending again
 if 'draw' string is given redraw screen

check_symbols•

 List all used symbols in current schematic and warn if some symbol is newer

check_unique_names [1|0]•

 Check if all instances have a unique refdes (name attribute in xschem),
 highlight such instances. If second parameter is '1' rename duplicates

closest_object•

 returns index of closest object to mouse coordinates
 index = type layer n
 type = wire | text | line | poly | rect | arc | inst
 layer is the layer number the object is drawn with
 (valid for line, poly, rect, arc)
 n is the index of the object in the xschem array
 example:
 $ after 3000 {set obj [xschem closest_object]}
 (after 3s)
 $ puts $obj
 line 4 19

circle•

 Start a GUI placement of a circle.
 User should click 3 unaligned points to define the circle

clear [force] [symbol|schematic]•

 Clear current schematic window. Resets hierarchy level. Remove symbols
 the 'force' parameter will not ask to save existing modified schematic.
 the 'schematic' or 'symbol' parameter specifies to default to a schematic
 or symbol window (default: schematic)

clear_drawing•

 Clears drawing but does not purge symbols

color_dim value•

 Dim colors or brite colors depending on value parameter: -5 <= value <= 5

compare_schematics [sch_file]•

 Compare currently loaded schematic with another 'sch_file' schematic.
 if no file is given prompt user to choose one

connected_nets [0|1|2|3]•

 Select nets/labels connected to currently selected instance

XSCHEM COMMAND REFERENCE DOCUMENTATION

165

 if '1' argument is given, stop at wire junctions
 if '2' argument is given select only wires directly
 attached to selected instance/net
 if '3' argument is given combine '1' and '2'

copy•

 Copy selection to clipboard

copy_hierarchy to from•

 Copy hierarchy info from tab/window "from" to tab/window "to"
 Example: xschem copy_hierarchy .drw .x1.drw

copy_objects [deltax deltay [rot flip]]•

 if deltax and deltay (and optionally rot and flip) are given copy selection
 to specified offset, otherwise start a GUI copy operation

count_items string separator quoting_chars•

 Debug command

create_plot_cmd•

 Create an xplot file in netlist/simulation directory with
 the list of highlighted nodes in a format the selected waveform
 viewer understands (bespice, gaw, ngspice)

cursor n e•

 enable or disable cursors.
 cursor will be set at 0.0 position. use 'xschem set cursor[12]_x' to set position
 n: cursor number (1 or 2, for a or b)
 e: enable flag: 1: show, 0: hide

cut•

 Cut selection to clipboard

debug n•

 Set xschem in debug mode.'n' is the debug level
 (0=no debug). Higher levels yield more debug info.

delete•

 Delete selection

delete_files•

 Bring up a file selector the user can use to delete files

descend [n] [notitle]•

 Descend into selected component instance. Optional number 'n' specifies the

XSCHEM COMMAND REFERENCE DOCUMENTATION

166

 instance number to descend into for vector instances (default: 0).
 0 or 1: leftmost instance, 2: second leftmost instance, ...
 -1: rightmost instance,-2: second rightmost instance, ...
 if integer 'notitle' is given pass it to descend_schematic()

descend_symbol•

 Descend into the symbol view of selected component instance

destroy_all [force]•

 Close all additional windows/tabs. If 'force' is given do not ask for
 confirmation for changed schematics
 Returns the remaining # of windows/tabs in addition to main window/tab

display_hilights [nets|instances]•

 Print a list of highlighted objects (nets, net labels/pins, instances)
 if 'instances' is specified list only instance highlights
 if 'nets' is specified list only net highlights

draw_graph [n] [flags]•

 Redraw graph rectangle number 'n'.
 If the optional 'flags' integer is given it will be used as the
 flags bitmask to use while drawing (can be used to restrict what to redraw)

drc_check [i]•

 Perform DRC rulecheck of instances.
 if i is specified do check of specified instance
 otherwise check all instances in current schematic.

edit_file•

 Edit xschem file of current schematic if nothing is selected.
 Edit .sym file if a component is selected.

edit_prop•

 Edit global schematic/symbol attributes or attributes
 of currently selected instances

edit_vi_prop•

 Edit global schematic/symbol attributes or
 attributes of currently selected instances
 using a text editor (defined in tcl 'editor' variable)

embed_rawfile raw_file•

 Embed base 64 encoded 'raw_file' into currently
 selected element as a 'spice_data'
 attribute.

enable_layers•

XSCHEM COMMAND REFERENCE DOCUMENTATION

167

 Enable/disable layers depending on tcl array variable enable_layer()

escape_chars source [charset]•

 escape tcl special characters with backslash
 if charset is given escape characters in charset

exit [exit_code] [closewindow] [force]•

 Exit the program, ask for confirm if current file modified.
 if exit_code is given exit with its value, otherwise use 0 exit code
 if 'closewindow' is given close the window, otherwise leave with a blank schematic
 when closing the last remaining window
 if 'force' is given do not ask before closing modified schematic windows/tabs
 This command returns the list of remaining open windows in addition to main window

expandlabel lab•

 Expand vectored labels/instance names:
 xschem expandlabel {2*A[3:0]} --> A[3],A[2],A[1],A[0],A[3],A[2],A[1],A[0] 8
 last field is the number of bits
 since [and] are TCL special characters argument must be quoted with { and }

fill_reset [nodraw]•

 After setting tcl array pixdata(n) reset fill patterns on all layers
 If 'nodraw' is given do not redraw window.

fill_type n fill_type [nodraw]•

 Set fill type for layer 'n', fill_type may be 'solid' or 'stipple' or 'empty'
 If 'nodraw' is given do not redraw window.

find_nth string sep quote keep_quote n•

 Find n-th field string separated by characters in sep. 1st field is in position 1
 do not split quoted fields (if quote characters are given) and return unquoted.
 xschem find_nth {aaa,bbb,ccc,ddd} {,} 2 --> bbb
 xschem find_nth {aaa, "bbb, ccc" , ddd} { ,} {"} 2 --> bbb, ccc

flip [x0 y0]•

 Flip selection horizontally around point x0 y0.
 if x0, y0 not given use mouse coordinates

flip_in_place•

 Flip selection horizontally, each object around its center

flipv [x0 y0]•

 Flip selection vertically around point x0 y0.
 if x0, y0 not given use mouse coordinates

flipv_in_place•

 Flip selection vertically, each object around its center

XSCHEM COMMAND REFERENCE DOCUMENTATION

168

floaters_from_selected_inst•

 flatten to current level selected instance texts

fullscreen•

 Toggle fullscreen modes: fullscreen with menu & status, fullscreen, normal

get var•

 Get C variable/constant 'var'

backlayer number of background layer♦
bbox bounding box schematic♦
bbox_hilighted bounding box of highlinhted objects♦
bbox_selected bounding box of selected objects♦
cadlayers number of layers♦
case_insensitive case_insensitive symbol matching♦
color_ps color postscript flag♦
constr_mv color postscript flag♦
current_dirname directory name of current design♦
current_name name of current design (no library path)♦
current_win_path path of current tab/window (.drw, .x1.drw, ...)♦
currsch hierarchy level of current schematic (start at 0)♦
cursor1_x cursor 1 position♦
cursor2_x cursor 2 position♦
debug_var debug level (0 = no debug, 1, 2, 3,...)♦
draw_window direct draw into window♦
first_sel get data about first selected object♦
fix_broken_tiled_fill get drawing method setting (for broken GPUs)♦
fix_mouse_coord get fix_mouse_coord setting (fix for broken RDP)♦
format alternate format attribute to use in netlist (or NULL)♦
graph_lastsel number of last graph that was clicked♦
gridlayer layer number for grid♦
help command help♦
header_text header metadata (license info etc) present in schematic♦
infowindow_text ERC messages♦
instances number of instances in schematic♦
intuitive_interface ERC messages♦
last_created_window return win_path of last created tab or window♦
lastsel number of selected objects♦
line_width get line width♦
lines (xschem get lines n) number of lines on layer 'n'♦
netlist_name netlist name if set. If 'fallback' given get default name♦
netlist_type get current netlist type (spice/vhdl/verilog/tedax)♦
no_draw disable drawing♦
ntabs get number of additional tabs (0 = only one tab)♦
pinlayer layer number for pins♦
raw_level hierarchy level where raw file was loaded♦
rectcolor current layer number♦
rects (xschem get rects n) number of rectangles on layer 'n'♦
sellayer layer number for selection♦

XSCHEM COMMAND REFERENCE DOCUMENTATION

169

semaphore used for debug♦
schname get full path of current sch. if 'n' given get sch of level 'n'♦
schprop get schematic "spice" global attributes♦
schvhdlprop get schematic "vhdl" global attributes♦
schverilogprop get schematic "verilog" global attributes♦
schsymbolprop get schematic "symbol" global attributes♦
schtedaxprop get schematic "tedax" global attributes♦
sch_path get hierarchy path. if 'n' given get hierpath of level 'n'♦
sch_to_compare if set return schematic current design is compared with♦
symbols number of loaded symbols♦
temp_dir get windows temporary dir♦
text_svg return 1 if using <text> elements in svg export♦
textlayer layer number for texts♦
top_path get top hier path of current window (always "" for tabbed if)♦
topwindow same as top_path but main window returned as "."♦
version return xschem version♦
wirelayer layer used for wires♦
wires number of wires♦
xschem_web_dirname♦
xorigin x coordinate of origin♦
yorigin y coordinate of origin♦
zoom zoom level♦

get_additional_symbols what•

 create new symbols for instance based implementation selection

get_cell cell n_dirs•

 return result of get_cell function

get_cell_w_ext cell n_dirs•

 return result of get_cell_w_ext function

getprop instance|instance_pin|symbol|text ref•

 getprop instance inst
 Get the full attribute string of 'inst'

 getprop instance inst attr
 Get the value of attribute 'attr'
 If 'attr has the form 'cell::sym_attr' look up attribute 'sym_attr'
 of the symbol referenced by the instance.

 getprop instance_notcl inst attr
 Same as above but do not perform tcl substitution

 getprop instance_pin inst pin
 Get the full attribute string of pin 'pin' of instance 'inst'
 Example: xschem getprop instance_pin x3 MINUS --> name=MINUS dir=in

 getprop instance_pin inst pin pin_attr
 Get attribute 'pin_attr' of pin 'pin' of instance 'inst'
 Example: xschem getprop instance_pin x3 MINUS dir --> in

XSCHEM COMMAND REFERENCE DOCUMENTATION

170

 getprop symbol sym_name
 Get full attribute string of symbol 'sym_name'
 example:
 xschem getprop symbol comp_ngspice.sym -->
 type=subcircuit
 format="@name @pinlist @symname
 OFFSET=@OFFSET AMPLITUDE=@AMPLITUDE GAIN=@GAIN ROUT=@ROUT COUT=@COUT"
 template="name=x1 OFFSET=0 AMPLITUDE=5 GAIN=100 ROUT=1000 COUT=1p"

 getprop symbol sym_name sym_attr [with_quotes]
 Get value of attribute 'sym_attr' of symbol 'sym_name'
 'with_quotes' (default:0) is an integer passed to get_tok_value()

 getprop rect layer num attr [with_quotes]
 if '1' is given as 'keep' return backslashes and unescaped quotes if present in value
 Get attribute 'attr' of rectangle number 'num' on layer 'layer'

 getprop text num attr
 Get attribute 'attr' of text number 'num'
 if attribute is 'txt_ptr' return the text

 getprop wire num attr
 Get attribute 'attr' of wire number 'num'

 ('inst' can be an instance name or instance number)
 ('pin' can be a pin name or pin number)

get_sch_from_sym inst [symbol]•

 get schematic associated with instance 'inst'
 if inst==-1 and a 'symbol' name is given get sch associated with symbol

get_tok str tok [with_quotes]•

 get value of token 'tok' in string 'str'
 'with_quotes' (default:0) is an integer passed to get_tok_value()

get_tok_size•

 Get length of last looked up attribute name (not its value)
 if returned value is 0 it means that last searched attribute did not exist

globals•

 Return various global variables used in the program

go_back [notitle]•

 Go up one level (pop) in hierarchy
 if integer 'notitle' given pass it to the go_back() function (1=do not update window title)

grabscreen•

 grab root window

hash_file file [skip_path_lines]•

 Do a simple hash of 'file'
 'skip_path_lines' is an integer (default: 0) passed to hash_file()

XSCHEM COMMAND REFERENCE DOCUMENTATION

171

hash_string str•

 Do a simple hashing of string 'str'

help•

 Print command help

hier_psprint [file]•

 Hierarchical postscript / pdf print
 if 'file' is not given show a fileselector dialog box

hilight [drill]•

 Highlight selected element/pins/labels/nets
 if 'drill' is given propagate net highlights through conducting elements
 (elements that have the 'propag' attribute on pins)

hilight_instname inst [fast]•

 Highlight instance 'inst'
 if 'fast' is specified do not redraw
 'inst' can be an instance name or number

hilight_netname net•

 Highlight net name 'net'

image
[invert|white_transp|black_transp|transp_white|transp_black|write_back|

•

 blend_white|blend_black]
 Apply required changes to selected images
 invert: invert colors
 white_transp: transform white color to transparent (alpha=0)
 black_transp: transform black color to transparent (alpha=0)
 transp_white: transform transparent to white color
 transp_black: transform transparent to black color
 blend_white: blend with white background and remove alpha
 blend_black: blend with black background and remove alpha
 write_back: write resulting image back into `image_data` attribute

instance sym_name x y rot flip [prop] [n]•

 Place a new instance of symbol 'sym_name' at position x,y,
 rotation and flip set to 'rot', 'flip'
 if 'prop' is given it is the new instance attribute
 string (default: symbol template string)
 if 'n' is given it must be 0 on first call
 and non zero on following calls
 It is used only for efficiency reasons if placing multiple instances

instance_bbox inst•

 return instance and symbol bounding boxes
 'inst' can be an instance name or number

XSCHEM COMMAND REFERENCE DOCUMENTATION

172

instance_coord [instance]•

 Return instance name, symbol name, x placement coord, y placement coord, rotation and flip
 of selected instances
 if 'instance' is given (instance name or number) return data about specified instance
 Example:
 xschem [~] xschem instance_coord
 {R5} {res.sym} 260 260 0 0
 {C1} {capa.sym} 150 150 1 1

instance_list•

 Return a list of 3-items. Each 3-item is
 an instance name followed by the symbol reference and symbol type.
 Example: xschem instance_list -->
 {x1} {sky130_tests/bandgap.sym} {subcircuit}} {...} {...} {...} ...

instance_net inst pin•

 Return the name of the net attached to pin 'pin' of instance 'inst'
 Example: xschem instance_net x3 MINUS --> REF

instance_nodemap inst [pin]•

 Return the instance name followed by a list of 'pin net' associations
 example: xschem instance_nodemap x3
 --> x3 PLUS LED OUT LEVEL MINUS REF
 instance x3 pin PLUS is attached to net LED, pin OUT to net LEVEL and so on...
 If 'pin' is given restrict map to only that pin

instance_number inst [n]•

 Return the position of instance 'inst' in the instance array
 If 'n' is given set indicated instance position to 'n'

instance_pin_coord inst attr value•

 Return the name and coordinates of pin with
 attribute 'attr' set to 'value' of instance 'inst'
 'inst can be an instance name or a number
 Example: xschem instance_pin_coord x3 name MINUS --> {MINUS} 600 -840

instance_pins inst•

 Return list of pins of instance 'inst'
 'inst can be an instance name or a number

instance_pos inst•

 Get number (position) of instance name 'inst'

instances_to_net net•

 Return list of instances names and pins attached to net 'net'
 Example: xschem instances_to_net PANEL
 --> { {Vsw} {plus} {580} {-560} } { {p2} {p} {660} {-440} }
 { {Vpanel1} {minus} {600} {-440} }

XSCHEM COMMAND REFERENCE DOCUMENTATION

173

is_symgen symbol•

 tell if 'symbol' is a generator (symbol(param1,param2,...)

line [x1 y1 x2 y2] [pos] [propstring] [draw]•

 if 'x1 y1 x2 y2'is given place line on current
 layer (rectcolor) at indicated coordinates.
 if 'pos' is given insert at given position in rectangle array.
 if 'pos' set to -1 append to last element in line array.
 'propstring' is the attribute string. Set to empty if not given.
 if 'draw' is set to 1 (default) draw the new object, else don't
 If no coordinates are given start a GUI operation of line placement

line_width n•

 set line width to floating point number 'n'

list_hierarchy•

 List all schematics at or below current hierarchy with modification times.
 Example: xschem list_hiearchy
 -->
 20230302_003134 {/home/.../ngspice/solar_panel.sch}
 20230211_010031 {/home/.../ngspice/pv_ngspice.sch}
 20221011_175308 {/home/.../ngspice/diode_ngspice.sch}
 20221014_091945 {/home/.../ngspice/comp_ngspice.sch}

list_hilights [sep | all | all_nets | all_inst]•

 Sorted list of non port or non top level current level highlight nets,
 separated by character 'sep' (default: space)
 if `all_inst` is given list all instance hilights
 if `all_nets` is given list all net hilights
 if `all` is given list all hash content

list_nets•

 List all nets with type (in / out / inout / net)

list_tokens str with_quotes•

 List tokens in string 'str'
 with_quotes:
 0: eat non escaped quotes (")
 1: return unescaped quotes as part of the token value if they are present
 2: eat backslashes

load f [symbol|gui|noundoreset|nofullzoom]•

 Load a new file 'f'.
 'gui': ask to save modified file or warn if opening an already
 open file or opening a new(not existing) file.
 'noundoreset': do not reset the undo history
 'symbol': do not load symbols (used if loading a symbol instead of a schematic)
 'nofullzoom': do not do a full zoom on new schematic.
 'nodraw': do not draw.

XSCHEM COMMAND REFERENCE DOCUMENTATION

174

load_new_window [f]•

 Load schematic in a new tab/window. If 'f' not given prompt user
 if 'f' is given as empty '{}' then open untitled.sch

log f•

 If 'f' is given output stderr messages to file 'f'
 if 'f' is not given and a file log is open, close log
 file and resume logging to stderr

log_write text•

 write given string to log file, so tcl can write messages on the log file

logic_get_net net_name•

 Get logic state of net named 'net_name'
 Returns 0, 1, 2, 3 for logic levels 0, 1, X, Z or nothing if no net found.

logic_set_net net_name n [num]•

 set 'net_name' to logic level 'n' 'num' times.
 'n':
 0 set to logic value 0
 1 set to logic value 1
 2 set to logic value X
 3 set to logic value Z
 -1 toggle logic valie (1->0, 0->1)
 the 'num' parameter is essentially useful only with 'toggle' (-1) value

logic_set n [num]•

 set selected nets, net labels or pins to logic level 'n' 'num' times.
 'n':
 0 set to logic value 0
 1 set to logic value 1
 2 set to logic value X
 3 set to logic value Z
 -1 toggle logic valie (1->0, 0->1)
 the 'num' parameter is essentially useful only with 'toggle' (-1) value

make_sch•

 Make a schematic from selected symbol

make_sch_from_sel•

 Create an LCC instance from selection and place it instead of selection
 also ask if a symbol (.sym) file needs to be created

make_symbol•

 From current schematic (circuit.sch) create a symbol (circuit.sym)
 using ipin.sym, opin.sym, iopin.sym in schematic
 to deduce symbol interface pins.

XSCHEM COMMAND REFERENCE DOCUMENTATION

175

merge [f]•

 Merge another file. if 'f' not given prompt user.

move_instance inst x y rot flip [nodraw] [noundo]•

 resets instance coordinates, and rotaton/flip. A dash will keep existing value
 if 'nodraw' is given do not draw the moved instance
 if 'noundo' is given operation is not undoable

move_objects [dx dy] [kissing] [stretch]•

 Start a move operation on selection and let user terminate the operation in the GUI
 if kissing is given add nets to pins that touch other instances or nets
 if stretch is given stretch connected nets to follow instace pins
 if dx and dy are given move by that amount.

my_strtok_r str delim quote keep_quote•

 test for my_strtok_r() function

net_label [type]•

 Place a new net label
 'type': 1: place a 'lab_pin.sym' label
 0: place a 'lab_wire.sym' label
 User should complete the placement in the GUI.

net_pin_mismatch•

 Highlight nets attached to selected symbols with
 a different name than symbol pin

netlist [-messages] [filename]•

 do a netlist of current schematic in currently defined netlist format
 if 'filename'is given use specified name for the netlist
 if 'filename' contains path components place the file in specified path location.
 if only a name is given and no path ('/') components are given use the
 default netlisting directory.
 This means that 'xschem netlist test.spice' and 'xschem netlist ./test.spice'
 will create the netlist in different places.
 netlisting directory is reset to previous setting after completing this command
 If -messages is given return the ERC messages instead of just a fail (1)
 or no fail (0) code.

new_process [f]•

 Start a new xschem process for a schematic.
 If 'f' is given load specified schematic.

new_schematic create|destroy|destroy_all|switch winpath file [draw]•

 Open/destroy a new tab or window
 create: create new empty window or with 'file' loaded if 'file' given.
 The winpath must be given (even {} is ok).
 non empty winpath ({1}) will avoid warnings if opening the
 same file multiple times.

XSCHEM COMMAND REFERENCE DOCUMENTATION

176

 destroy: destroy tab/window identified by winpath. Example:
 xschem new_schematic destroy .x1.drw
 destroy_all: close all tabs/additional windows
 if the 'force'argument is given do not issue a warning if modified
 tabs are about to be closed.
 switch: switch context to specified 'winpath' window or specified schematic name
 If 'draw' is given and set to 0 do not redraw after switching tab
 (only tab i/f)
 Main window/tab has winpath set to .drw,
 Additional windows/tabs have winpath set to .x1.drw, .x2.drw and so on...

only_probes•

 dim schematic to better show highlights

origin x y [zoom]•

 Move origin to 'x, y', optionally changing zoom level to 'zoom'
 A dash ('-') given for x or y will keep existing value

parse_cmd•

 debug command to test parse_cmd_string()
 splits a command string into argv-like arguments
 return # of args in *argc
 argv[*argc] is always set to NULL

parselabel str•

 Debug command to test vector net syntax parser

paste [x y]•

 Paste clipboard. If 'x y' not given user should complete placement in the GUI

pinlist inst [attr]•

 List all pins of instance 'inst'
 if no 'attr' is given return full attribute string,
 else return value for attribute 'attr'.
 Example: xschem pinlist x3 name
 --> { {0} {PLUS} } { {1} {OUT} } { {2} {MINUS} }
 Example: xschem pinlist x3 dir
 --> { {0} {in} } { {1} {out} } { {2} {in} }
 Example: xschem pinlist x3
 --> { {0} {name=PLUS dir=in } } { {1} {name=OUT dir=out } }
 { {2} {name=MINUS dir=in } }

place_symbol [sym_name] [prop]•

 Start a GUI placement operation of specified 'sym_name' symbol.
 If 'sym_name' not given prompt user
 'prop' is the attribute string of the symbol.
 If not given take from symbol template attribute.

place_text•

 Start a GUI placement of a text object

XSCHEM COMMAND REFERENCE DOCUMENTATION

177

polygon•

 Start a GUI placement of a polygon

preview_window create|draw|destroy|close [winpath] [file]•

 destroy: will delete preview schematic data and destroy container window
 close: same as destroy but leave the container window.
 Used in fileselector to show a schematic preview.

print png|svg|ps|pdf|ps_full|pdf_full img_file [img_x img_y] [x1 y1 x2 y2]•

 If img_x and img_y are set to 0 (recommended for svg and ps/pdf)
 they will be calculated by xschem automatically
 if img_x and img_y are given they will set the bitmap size, if
 area to export is not given then use the selection boundbox if
 a selection exists or do a full zoom.
 Export current schematic to image.
 img x y size xschem area to export
 0 1 2 3 4 5 6 7 8 9
 xschem print png file.png [400 300] [-300 -200 300 200]
 xschem print svg file.svg [400 300] [-300 -200 300 200]
 xschem print ps file.ps [400 300] [-300 -200 300 200]
 xschem print eps file.eps [400 300] [-300 -200 300 200]
 xschem print pdf file.pdf [400 300] [-300 -200 300 200]
 xschem print ps_full file.ps
 xschem print pdf_full file.pdf

print_hilight_net show•

 from highlighted nets/pins/labels:
 show == 0 ==> create pins from highlight nets
 show == 1 ==> show list of highlight net in a dialog box
 show == 2 ==> create labels with i prefix from hilight nets
 show == 3 ==> show list of highlight net with path and label
 expansion in a dialog box
 show == 4 ==> create labels without i prefix from hilight nets
 for show = 0, 2, 4 user should complete GUI placement
 of created objects

print_spice_element inst•

 Print spice raw netlist line for instance (number or name) 'inst'

propagate_hilights [set clear]•

 Debug: wrapper to propagate_hilights() function

push_undo•

 Push current state on undo stack

raw what ...•

 what = add | clear | datasets | index | info | loaded | list | new | points | rawfile | del |
 read | set | sim_type | switch | switch_back | table_read | value | values | pos_at | vars |

 xschem raw read filename [type [sweep1 sweep2]]
 if sweep1, sweep2 interval is given in 'read' subcommand load only the interval

XSCHEM COMMAND REFERENCE DOCUMENTATION

178

 sweep1 <= sweep_var < sweep2
 type is the analysis type to load (tran, dc, ac, op, ...). If not given load first found in
 raw file.

 xschem raw clear [rawfile [type]]
 unload given file and type. If type not given delete all type sfrom rawfile
 if no file is given unload all raw files.

 xschem raw del name
 delete named vector from current raw file

 xschem raw info
 print information about loaded raw files and show the currently active one.

 xschem raw new name type sweepvar start end step
 create a new raw file with sweep variable 'sweepvar' with number=(end - start) / step datapoints
 from start value 'start' and step 'step'

 xschem raw list
 get list of saved simulation variables

 xschem raw vars
 get number of simulation variables

 xschem raw switch [n | rawfile type]
 make the indicated 'rawfile, type' the active one
 else if a number n is specified make the n-th raw data the active one.
 if no file or number is specified then switch to the next rawdata in the list.

 xschem switch_back
 switch to previously active rawdata.

 xschem raw datasets
 get number of datasets (simulation runs)

 xschem raw value node n [dset]
 return n-th value of 'node' in raw file
 dset is the dataset to look into in case of multiple runs (first run = 0).
 if dset = -1 consider n as the absolute position into the whole data file
 (all datasets combined).
 If n is given as empty string {} return value at cursor b,
 dset not used in this case

 xschem raw loaded
 return hierarchy level where raw file was loaded or -1 if no raw loaded

 xschem raw rawfile
 return raw filename

 xschem raw sim_type
 return raw loaded simulation type (ac, op, tran, ...)

 xschem raw index node
 get index of simulation variable 'node'.
 Example: raw index v(led) --> 46

 xschem raw values node [dset]
 print all simulation values of 'node' for dataset 'dset' (default dset=0)
 dset= -1: print all values for all datasets

 xschem raw pos_at node value [dset] [from_start] [to_end]
 returns the position, starting from 0 or from_start if given, to the end of dataset
 or to_end if given of the first point 'p' where node[p] and node[p+1] bracket value.
 If dset not given assume dset 0 (first one)

XSCHEM COMMAND REFERENCE DOCUMENTATION

179

 This is usually done on the sweep (time) variable in transient sims where timestep is
 not uniform

 xschem raw points [dset]
 print simulation points for dataset 'dset' (default: all dataset points combined)

 xschem raw set node n value [dset]
 change loaded raw file data node[n] to value
 dset is the dataset to look into in case of multiple runs (first run = 0)
 dset = -1: consider n as the absolute position in the whole raw file
 (all datasets combined)

 xschem raw table_read tablefile
 read a tabular data file.
 First line is the header line containing variable names.
 data is presented in column format after the header line
 First column is sweep (x-axis) variable
 Double empty lines start a new dataset
 Single empty lines are ignored
 Datasets can have different # of lines.
 new dataset do not start with a header row.
 Lines beginning with '#' are comments and ignored

 time var_a var_b var_c
 # this is a comment, ignored
 0.0 0.0 1.8 0.3
 <single empty line: ignored>
 0.1 0.0 1.5 0.6

 <empty line>
 <Second empty line: start new dataset>
 0.0 0.0 1.8 0.3
 0.1 0.0 1.5 0.6

 xschem raw add varname [expr] [sweep_var]
 add a 'varname' vector with all values set to 0 to loaded raw file if expr not given
 otherwise initialize data with values calculated from expr.
 if expr is given and also sweep_var is given use indicated sweep_var for expressions
 that need it. If sweep_var not given use first raw file variable as sweep variable.
 If varname is already existing and expr given recalculate data
 Example: xschem raw add power {outm outp - i(@r1[i]) *}

raw_clear•

 Unload all simulation raw files
 You can use xschem raw clear as well.

raw_read [file] [sim] [sweep1 sweep2]•

 If a raw file is already loaded delete from memory
 then load specified file and analysis 'sim' (dc, ac, tran, op, ...)
 If 'sim' not specified load first section found in raw file.
 if sweep1, sweep2 interval is given load only the interval
 sweep1 <= sweep_var < sweep2

raw_read_from_attr [sim]•

 If a simulation raw file is already loaded delete from memory
 else read section 'sim' (tran, dc, ac, op, ...)
 of base64 encoded data from a 'spice_data'

XSCHEM COMMAND REFERENCE DOCUMENTATION

180

 attribute of selected instance
 If sim not given read first section found

rebuild_connectivity•

 Rebuild logical connectivity abstraction of schematic

rebuild_selection•

 Rebuild selection list

record_global_node n node•

 call the record_global_node function (list of netlist global nodes)

rect [x1 y1 x2 y2] [pos] [propstring] [draw]•

 if 'x1 y1 x2 y2'is given place recangle on current
 layer (rectcolor) at indicated coordinates.
 if 'pos' is given insert at given position in rectangle array.
 if 'pos' set to -1 append rectangle to last element in rectangle array.
 'propstring' is the attribute string. Set to empty if not given.
 if 'draw' is set to 1 (default) draw the new object, else don't
 If no coordinates are given start a GUI operation of rectangle placement

redo•

 Redo last undone action

redraw•

 redraw window

reload•

 Forced (be careful!) Reload current schematic from disk

reload_symbols•

 Reload all used symbols from disk

remove_symbols•

 Internal command: remove all symbol definitions

replace_symbol inst new_symbol [fast]•

 Replace 'inst' symbol with 'new_symbol'
 If doing multiple substitutions set 'fast' to {}
 on first call and 'fast' on next calls
 for faster operation.
 do a 'xschem redraw' at end to update screen
 Example: xschem replace_symbol R3 capa.sym

reset_caches•

XSCHEM COMMAND REFERENCE DOCUMENTATION

181

 Reset cached instance and symbol cached flags (inst->flags, sym->flags)

reset_inst_prop inst•

 Reset instance attribute string taking it from symbol template string

reset_symbol inst symref•

 This is a low level command, it merely changes the xctx->inst[...].name field.
 It is caller responsibility to delete all symbols before and do a reload_symbols
 afterward

resetwin create_pixmap clear_pixmap force w h•

 internal command: calls resetwin()

resolved_net [net]•

 if 'net' is given return its topmost full hierarchy name
 else returns the topmost full hierarchy name of selected net/pin/label.
 Nets connected to I/O ports are mapped to upper level recursively

rotate [x0 y0]•

 Rotate selection around point x0 y0.
 if x0, y0 not given use mouse coordinates

rotate_in_place•

 Rotate selected objects around their 0,0 coordinate point

save•

 Save schematic if modified. Does not ask confirmation!

saveas [file] [type]•

 save current schematic as 'file'
 if file is empty ({}) use current schematic name
 as defalt and prompt user with file selector
 'type' is used used to set/change file extension:
 schematic: save as schematic (*.sch)
 symbol: save as symbol (*.sym)
 If not specified default to schematic (*.sch)
 Does not ask confirmation if file name given

sch_pinlist•

 List a 2-item list of all pins and directions of current schematic
 Example: xschem sch_pinlist
 --> {PLUS} {in} {OUT} {out} {MINUS} {in} {VCC} {inout} {VSS} {inout}

schematic_in_new_window [new_process] [nodraw] [force]•

 When a symbol is selected edit corresponding schematic
 in a new tab/window if not already open.
 If nothing selected open another window of the second

XSCHEM COMMAND REFERENCE DOCUMENTATION

182

 schematic (issues a warning).
 if 'new_process' is given start a new xschem process
 if 'nodraw' is given do not draw loaded schematic
 returns '1' if a new schematic was opened, 0 otherwise

search regex|exact select tok val [match_case]•

 Search instances / wires / rects / texts with attribute string containing 'tok'
 and value 'val'
 search can be exact ('exact') or as a regular expression ('regex')
 select:
 0 : highlight matching instances
 1 : select matching instances
 -1 : unselect matching instances
 'tok' set as:
 propstring : will search for 'val' in the entire
 instance attribute string.
 cell::propstring : will search for 'val' in the entire
 symbol attribute string.
 cell::name : will search for 'val' in the symbol name
 cell::<attr> will search for 'val' in symbol attribute 'attr'
 example: xschem search regex 0 cell::template GAIN=100
 match_case:
 1 : Match case
 0 : Do not match case
 If not given assume 1 (Match case)

select instance|wire|text id [clear] [fast]•

 select rect|line|poly|arc layer id [clear] [fast]
 Select indicated instance or wire or text, or
 Select indicated (layer, number) rectangle, line, polygon, arc.
 For 'instance' 'id' can be the instance name or number
 for all other objects 'id' is the position in the respective arrays
 if 'clear' is specified does an unselect operation
 if 'fast' is specified avoid sending information to infowindow and status bar
 returns 1 if something selected, 0 otherwise

select_all•

 Selects all objects in schematic

select_dangling_nets•

 Select all nets/labels that are dangling, ie not attached to any non pin/port/probe components
 Returns number of selected items (wires,labels) if danglings found, 0 otherwise

select_hilight_net•

 Select all highlight objects (wires, labels, pins, instances)

select_inside x1 y1 x2 y2 [sel]•

 Select all objects inside the indicated area
 if [sel] is set to '0' do an unselect operation

selected_set [what]•

 Return a list of selected instance names

XSCHEM COMMAND REFERENCE DOCUMENTATION

183

 If what is not given or set to 'inst' return list of selected instance names
 If what set to 'rect' return list of selected rectangles with their coordinates
 If what set to 'text' return list of selected texts with their coordinates

selected_wire•

 Return list of selected nets

send_to_viewer•

 Send selected wires/net labels/pins/voltage source or ammeter currents to current
 open viewer (gaw or bespice)

set var value•

 Set C variable 'var' to 'value'

cadgrid set cad grid (default: 20)♦
cadsnap set mouse snap (default: 10)♦
color_ps set color psoscript (1 or 0)♦
constr_mv set constrained move (1=horiz, 2=vert, 0=none)♦
cursor1_x set graph cursor1 position♦
cursor2_x set graph cursor2 position♦
draw_window set drawing to window (1 or 0)♦
fix_broken_tiled_fill alternate drawing method for broken GPUs♦
fix_mouse_coord fix for wrong mouse coords in RDP software♦
format set name of custom format attribute used for netlisting♦
header_text set header metadata (used for license info)♦
hide_symbols set to 0,1,2 for various hiding level of symbols♦
hilight_color set hilight color for next hilight♦
infowindow_text ERC messages♦
intuitive_interface ERC messages♦
netlist_name set custom netlist name♦
netlist_type set netlisting mode (spice, verilog, vhdl, tedax, symbol)♦
no_draw set no drawing flag (0 or 1)♦
no_undo set to 1 to disable undo♦
raw_level set hierarchy level loaded raw file refers to♦
rectcolor set current layer (0, 1, , cadlayers-1)♦
sch_to_compare set name of schematic to compare current window with♦
schsymbolprop set global symbol attribute string♦
schprop set schematic global spice attribute string♦
schverilogprop set schematic global verilog attribute string♦
schvhdlprop set schematic global vhdl attribute string♦
schtedaxprop set schematic global tedax attribute string♦
text_svg set to 1 to use svg <text> elements♦
semaphore debug♦
show_hidden_texts set to 1 to enable showing texts with attr hide=true♦
sym_txt set to 0 to hide symbol texts♦

set_different_tok str new_str old_str•

 Return string 'str' replacing/adding/removing tokens that are
 different between 'new_str' and 'old_str'

set_modify•

XSCHEM COMMAND REFERENCE DOCUMENTATION

184

 Force modify status on current schematic

setprop instance|symbol|text|rect ref tok [val] [fast]•

 setprop instance inst [tok] [val] [fast]
 set attribute 'tok' of instance (name or number) 'inst' to value 'val'
 If 'tok' set to 'allprops' replace whole instance prop_str with 'val'
 If 'val' not given (no attribute value) delete attribute from instance
 If 'tok' not given clear completely instance attribute string
 If 'fast' argument if given does not redraw and is not undoable

 setprop symbol name tok [val]
 Set attribute 'tok' of symbol name 'name' to 'val'
 If 'val' not given (no attribute value) delete attribute from symbol
 This command is not very useful since changes are not saved into symbol
 and netlisters reload symbols, so changes are lost anyway.

 setprop rect lay n tok [val] [fast|fastundo]
 Set attribute 'tok' of rectangle number'n' on layer 'lay'
 If 'val' not given (no attribute value) delete attribute from rect
 If 'fast' argument is given does not redraw and is not undoable
 If 'fastundo' s given same as above but action is undoable.

 setprop rect 2 n fullxzoom
 setprop rect 2 n fullyzoom
 These commands do full x/y zoom of graph 'n' (on layer 2, this is hardcoded).

 setprop text n [tok] [val] [fast|fastundo]
 Set attribute 'tok' of text number 'n'
 If 'tok' not specified set text string (txt_ptr) to value
 If "txt_ptr" is given as token replace the text txt_ptr ("the text")
 If 'val' not given (no attribute value) delete attribute from text
 If 'fast' argument is given does not redraw and is not undoable
 If 'fastundo' s given same as above but action is undoable.

simulate [callback]•

 Run a simulation (start simulator configured as default in
 Tools -> Configure simulators and tools)
 If 'callback' procedure name is given execute the procedure when simulation
 is finished. all execute(..., id) data is available (id = execute(id))
 A callback prodedure is useful if simulation is launched in background mode
 (set sim(spice,1,fg) 0)

snap_wire•

 Start a GUI start snapped wire placement (click to start a
 wire to closest pin/net endpoint)

str_replace str rep with [escape]•

 replace 'rep' with 'with' in string 'str'
 if rep not preceeded by an 'escape' character

subst_tok str tok newval•

 Return string 'str' with 'tok' attribute value replaced with 'newval'

symbol_in_new_window [new_process]•

XSCHEM COMMAND REFERENCE DOCUMENTATION

185

 When a symbol is selected edit it in a new tab/window if not already open.
 If nothing selected open another window of the second schematic (issues a warning).
 if 'new_process' is given start a new xschem process

swap_cursors•

 swap cursor A (1) and cursor B (2) positions.

swap_windows•

 swap first and second window in window interface (internal command)

switch [window_path |schematic_name]•

 Switch context to indicated window path or schematic name
 returns 0 if switch was successfull or 1 in case of errors
 (no tabs/windows present or no matching winpath / schematic name
 found).

symbols [n | 'derived_symbols']•

 if 'n' given list symbol with name or number 'n', else list all
 if 'derived_symbols' is given list also symbols derived from base symbol
 due to instance based implementation selection. This option must be used
 after a netlist operation with 'keep_symbols' TCL variable set to 1

tab_list•

 list all windows / tabs with window pathname and associated filename

table_read [table_file]•

 If a simulation raw file is lodaded unload from memory.
 else read a tabular file 'table_file'
 First line is the header line containing variable names.
 data is presented in column format after the header line
 First column is sweep (x-axis) variable
 Double empty lines start a new dataset
 Single empty lines are ignored
 Datasets can have different # of lines.
 new dataset do not start with a header row.
 Lines beginning with '#' are comments and ignored

 time var_a var_b var_c
 # this is a comment, ignored
 0.0 0.0 1.8 0.3
 <single empty line: ignored>
 0.1 0.0 1.5 0.6

 <empty line>
 <Second empty line: start new dataset>
 0.0 0.0 1.8 0.3
 0.1 0.0 1.5 0.6

test•

 Testmode ...

XSCHEM COMMAND REFERENCE DOCUMENTATION

186

text x y rot flip text props size draw•

 Create a text object
 x, y, rot, flip specify the position and orientation
 text is the text string
 props is the attribute string
 size sets the size
 draw is a flag. If set to 1 will draw the created text

text_string n•

 get text string of text object 'n'

toggle_colorscheme•

 Toggle dark/light colorscheme

toggle_ignore•

 toggle *_ignore=true attribute on selected instances
 * = {spice,verilog,vhdl,tedax} depending on current netlist mode

touch x1 y1 x2 y2 x0 y0•

 returns 1 if line {x1 y1 x2 y2} touches point {x0 y0}, 0 otherwise

translate n str•

 Translate string 'str' replacing @xxx tokens with values in instance 'n' attributes
 Example: xschem translate vref {the voltage is @value}
 the voltage is 1.8

translate3 str eat_escapes s1 [s2] [s3]•

 Translate string 'str' replacing @xxx tokens with values in string s1 or if
 not found in string s2 or if not found in string s3
 eat_escapes should be either 1 (remove backslashes) or 0 (keep them)
 Example: xschem translate3 {the voltage is @value} {name=x12} {name=x1 value=1.8}
 the voltage is 1.8

trim_chars str sep•

 Remove leading and trailing chars matching any character in 'sep' from str

trim_wires•

 Remove operlapping wires, join lines, trim wires at intersections

undo [redo [set_modify]]•

 Undo last action. Optional integers redo and set_modify are passed to pop_undo()

undo_type disk|memory•

 Use disk file ('disk') or RAM ('memory') for undo bufer

XSCHEM COMMAND REFERENCE DOCUMENTATION

187

unhilight_all [fast]•

 if 'fast' is given do not redraw
 Clear all highlights

unhilight•

 Unhighlight selected nets/pins

unselect_all [draw]•

 Unselect everything. If draw is given and set to '0' no drawing is done

update_all_sym_bboxes•

 Update all symbol bounding boxes

update_op•

 update tcl ngspice::ngspice array data from raw file point 0

view_prop•

 View attributes of selected element (read only)
 if multiple selection show the first element (in xschem array order)

warning_overlapped_symbols [sel]•

 Highlight or select (if 'sel' set to 1) perfectly overlapped instances
 this is usually an error and difficult to grasp visually

windowid topwin_path•

 Used by xschem.tcl for configure events (set icon)

wire_coord n•

 return 4 coordinates of wire[n]

wire [x1 y1 x2 y2] [pos] [prop] [sel]•

 Place a new wire
 if no coordinates are given start a GUI wire placement

wire_cut [x y] [noalign]•

 start a wire cut operation. Point the mouse in the middle of a wire and
 Alt-click right button.
 if x and y are given cut wire at given point
 if noalign is given and is set to 'noalign' do not align the cut point to closest snap point

xcb_info•

 For debug

XSCHEM COMMAND REFERENCE DOCUMENTATION

188

zoom_box [x1 y1 x2 y2] [factor]•

 Zoom to specified coordinates, if 'factor' is given reduce view (factor < 1.0)
 or add border (factor > 1.0)
 If no coordinates are given start GUI zoom box operation

zoom_full [center|nodraw|nolinewidth]•

 Set full view.
 If 'center' is given center vire instead of lower-left align
 If 'nodraw' is given don't redraw
 If 'nolinewidth]' is given don't reset line widths.

zoom_hilighted•

 Zoom to highlighted objects

zoom_in•

 Zoom in drawing

zoom_out•

 Zoom out drawing

zoom_selected•

 Zoom to selection

XSCHEM TCL GLOBAL VARIABLES

 # default command for first spice simulation command (interactive ngspice)
 sim(spice,0,cmd) {$terminal -e 'ngspice -i "$N" -a || sh'}

 # flag for foreground (1) or background (0) operation
 sim(spice,0,fg) 0

 # flag for status dialog box opening (1) at simulation end or not (0)
 sim(spice,0,st) 0

 sim(spice,1,cmd) {ngspice -b -r "$n.raw" -o "$n.out" "$N"}
 sim(spice,1,fg) 0
 sim(spice,1,st) 1
 sim(spice,2,cmd) "Xyce \"\$N\"\n# Add -r \"\$n.raw\" if you want all variables saved"
 sim(spice,2,fg) 0
 sim(spice,2,st) 1
 sim(spice,3,cmd) {mpirun /path/to/parallel/Xyce "$N"}
 sim(spice,3,fg) 0
 sim(spice,3,st) 1

 # Number of configured spice simulation commands (4), [sim(spice,0,...) ... sim(spice,3,...)]
 sim(spice,n) 4

 # default spice command to use (0) --> sim(spice,0,...)
 sim(spice,default) 0

XSCHEM TCL GLOBAL VARIABLES

189

 sim(spicewave,0,cmd) {gaw "$n.raw" }
 sim(spicewave,0,fg) 0
 sim(spicewave,0,st) 0
 sim(spicewave,1,cmd) {$terminal -e ngspice}
 sim(spicewave,1,fg) 0
 sim(spicewave,1,st) 0
 sim(spicewave,2,cmd) {rawtovcd -v 1.5 "$n.raw" > "$n.vcd" && gtkwave "$n.vcd" "$n.sav" 2>/dev/null}
 sim(spicewave,2,fg) 0
 sim(spicewave,2,st) 0
 sim(spicewave,3,cmd) {$env(HOME)/analog_flavor_eval/bin/bspwave --socket localhost $bespice_listen_port "$n.raw" }
 sim(spicewave,3,fg) 0
 sim(spicewave,3,st) 0
 sim(spicewave,n) 4
 sim(spicewave,default) 0

 # list of configured tools. For each of these there is a set of sim(tool,...) settings
 sim(tool_list) spice spicewave verilog verilogwave vhdl vhdlwave

 sim(verilog,0,cmd) {iverilog -o .verilog_object -g2012 "$N" && vvp .verilog_object}
 sim(verilog,0,fg) 0
 sim(verilog,0,st) 1
 sim(verilog,n) 1
 sim(verilog,default) 0
 sim(verilogwave,0,cmd) {gtkwave dumpfile.vcd "$N.sav" 2>/dev/null}
 sim(verilogwave,0,fg) 0
 sim(verilogwave,0,st) 0
 sim(verilogwave,n) 1
 sim(verilogwave,default) 0
 sim(vhdl,0,cmd) {ghdl -c --ieee=synopsys -fexplicit "$N" -r "$s" --wave="$n.ghw"}
 sim(vhdl,0,fg) 0
 sim(vhdl,0,st) 1
 sim(vhdl,n) 1
 sim(vhdl,default) 0
 sim(vhdlwave,0,cmd) {gtkwave "$n.ghw" "$N.sav" 2>/dev/null}
 sim(vhdlwave,0,fg) 0
 sim(vhdlwave,0,st) 0
 sim(vhdlwave,n) 1
 sim(vhdlwave,default) 0

 add_all_windows_drives 1
 autofocus_mainwindow 1
 auto_hilight 0
 autotrim_wires 0
 bespice_listen_port {}
 bespice_server_getdata
 big_grid_points 0
 bus_replacement_char {} ;# use {<>} to replace [] with <> in bussed signals
 cadlayers 22
 cairo_font_line_spacing 1.0
 cairo_font_name {Sans-Serif}
 cairo_font_scale 1.0
 cairo_vert_correct 0
 case_insensitive 0
 change_lw 1
 color_ps 1
 colors $dark_colors
 compare_sch 0
 component_browser_on_top 1
 connect_by_kissing 0
 constrained_move 0
 copy_cell 0
 dark_colors {
 "#000000" "#00ccee" "#3f3f3f" "#cccccc" "#88dd00" "#bb2200" "#00ccee" "#ff0000"
 "#ffff00" "#ffffff" "#ff00ff" "#00ff00" "#0044dd" "#aaaa00" "#aaccaa" "#ff7777"

XSCHEM TCL GLOBAL VARIABLES

190

 "#bfff81" "#00ffcc" "#ce0097" "#d2d46b" "#ef6158" "#fdb200"}
 dark_colorscheme 1
 dark_colors_save
 debug_var 0
 delay_flag
 dim_bg 0.0
 dim_value 0.0
 dircolor(/share/doc/xschem/) {#338844}
 dircolor(/share/xschem/) red
 disable_unique_names 0
 download_url_helper {curl -f -s -O}
 draw_grid 1
 draw_window 0
 editor {gvim -f}
 edit_prop_size 80x12
 edit_symbol_prop_new_sel {}
 enable_dim_bg 0
 enable_layer($i) 1
 enable_stretch 0
 en_hilight_conn_inst 0
 execute(cmd,<id>)
 execute(data,<id>)
 execute(status,<id>)
 execute(cmd,last)
 execute(data,last)
 execute(status,last)
 execute(error,last)
 execute(exitcode,last)
 execute(id)
 flat_netlist 0
 fullscreen 0
 gaw_tcp_address {localhost 2020}
 graph_bus 0
 graph_logx 0
 graph_logy 0
 graph_rainbow 0
 graph_raw_level -1 ;# hierarchy level where raw file has been loaded
 graph_schname {}
 graph_sel_color 4
 graph_selected {}
 graph_sel_wave {}
 graph_sort 0
 has_cairo 1
 has_x
 hide_empty_graphs 0 ;# if set to 1 waveform boxes will be hidden if no raw file loaded
 hide_symbols 0
 incr_hilight 1

 # text saved into the ERC informational dialog box.
 # netlist warnings and errors are shown here.
 infowindow_text

 initial_geometry {900x600}
 launcher_default_program {xdg-open}
 light_colors {
 "#ffffff" "#0044ee" "#aaaaaa" "#222222" "#229900" "#bb2200" "#00ccee" "#ff0000"
 "#888800" "#00aaaa" "#880088" "#00ff00" "#0000cc" "#666600" "#557755" "#aa2222"
 "#7ccc40" "#00ffcc" "#ce0097" "#d2d46b" "#ef6158" "#fdb200"}
 light_colors_save
 line_width 0
 live_cursor2_backannotate 0

 # if set use <sch_dir>/simulation for netlist and sims
 local_netlist_dir 0

XSCHEM TCL GLOBAL VARIABLES

191

 lvs_ignore 0
 lvs_netlist 0
 measure_text "y=\nx="
 menu_debug_var 0
 myload_files2 {}
 myload_globfilter {*}
 myload_index1 0
 netlist_dir "$USER_CONF_DIR/simulations"
 netlist_show 0
 netlist_type spice
 nocairo_font_xscale .85
 nocairo_font_yscale .88
 nocairo_vert_correct 0
 no_change_attrs 0
 nolist_libs {}
 noprint_libs {}
 only_probes 0 ; # 20110112
 OS
 persistent_command 0
 preserve_unchanged_attrs 0
 rainbow_colors 0
 search_schematic 0
 show_hidden_texts 0
 show_infowindow 0
 show_infowindow_after_netlist 0
 show_pin_net_names 0
 spiceprefix 1
 split_files 0
 svg_font_name {Sans-Serif}
 symbol_width 150
 sym_txt 1
 tabbed_interface 0
 tcl_files {}
 tclstop 0
 terminal xterm
 text_line_default_geometry 80x12
 textwindow_wcounter
 toolbar_horiz 1
 toolbar_list { ... }
 toolbar_visible 0
 to_pdf {ps2pdf}
 to_png {gm convert}
 transparent_svg 0
 undo_type disk
 unzoom_nodrift 0
 use_tclreadline 1 ;# use the tclreadline package for command prompt. default: 1
 USER_CONF_DIR
 verilog_2001 1
 verilog_bitblast 0
 viewdata_wcounter
 xschem_libs {}
 xschem_listen_port {}
 xschem_server_getdata
 XSCHEM_SHAREDIR
 XSCHEM_START_WINDOW {}
 XSCHEM_TMP_DIR {/tmp}
 zoom_full_center 0

XSCHEM TCL GLOBAL VARIABLES

192

Simulator / waveform setup

In xschem a tcl array variable sim is used to specify external process commands, like simulators and waveform viewers.
This variable is set in the GUI with the Simulation-> Configure simulators and tools menu entry. First
of all you need to set the tool_list list of configured tools:

 set sim(tool_list) { spice spicewave verilog verilogwave vhdl vhdlwave }

For each tool you need to define some sub elements:

 # Number of configured spice simulation commands (4), [sim(spice,0,...) ... sim(spice,3,...)]
 sim(spice,n) 4
 # default spice command to use (0) --> sim(spice,0,...)
 sim(spice,default) 0
 # default command for first spice simulation command (interactive ngspice)
 sim(spice,0,cmd) {$terminal -e 'ngspice -i "$N" -a || sh'}
 # flag for foreground (1) or background (0) operation
 sim(spice,0,fg) 0
 # flag for status dialog box opening (1) at simulation end or not (0)
 sim(spice,0,st) 0
 sim(spice,1,cmd) {ngspice -b -r "$n.raw" -o "$n.out" "$N"}
 sim(spice,1,fg) 0
 sim(spice,1,st) 1
 sim(spice,2,cmd) "Xyce \"\$N\"\n# Add -r \"\$n.raw\" if you want all variables saved"
 sim(spice,2,fg) 0
 sim(spice,2,st) 1
 sim(spice,3,cmd) {mpirun /path/to/parallel/Xyce "$N"}
 sim(spice,3,fg) 0
 sim(spice,3,st) 1

XSCHEM TCL PROCEDURES

Commands in brackets are internal procedures, not supposed to be used by end users

 # show xschem about dialog
 about

 # given a symbol reference 'sym' return its absolute path
 # Example: % abs_sym_path devices/iopin.sch
 # /home/schippes/share/xschem/xschem_library/devices/iopin.sym
 abs_sym_path sym

 add_ext
 add_lab_no_prefix
 add_lab_prefix

 # show an alert dialog box and display 'text'.
 # if 'position' is empty (example: alert_ {hello, world} {}) show at mouse coordinates
 # otherwise use specified coordinates example: alert_ {hello, world} +300+400
 # if nowait is 1 do not wait for user to close dialog box
 # if yesnow is 1 show yes and no buttons and return user choice (1 / 0).
 # (this works only if nowait is unset).
 alert_ text [position] [nowait] [yesno]

 ask_save
 attach_labels_to_inst

XSCHEM TCL PROCEDURES

193

 balloon
 balloon_show
 bespice_getdata
 bespice_server
 build_widgets
 change_color
 clear_simulate_button
 color_dim
 context_menu
 convert_to_pdf
 convert_to_png
 create_layers_menu
 create_pins

 # pause execution for 'ms milliseconds, keeping event loop responding
 delay [ms]
 delete_ctx
 delete_files
 delete_tab
 descend_hierarchy
 download_url
 edit_file
 edit_netlist
 edit_prop
 edit_vi_netlist_prop
 edit_vi_prop
 enter_text

 # evaluate 'expr'. if 'expr' has errors or does not evaluate return 'expr' as is
 ev expr

 every
 execute
 execute_fileevent
 execute_wait
 fill_graph_listbox

 # find file into $paths directories matching $f
 # use $pathlist global search path if $paths empty
 # recursively descend directories
 find_file f [paths]

 # as above, return only first match found
 find_file_first f [paths]

 # process all symbols in current design, get full path of them if found in
 # XSCHEM_LIBRARY_PATH search path, then transform them with exactly one 'n_dir'
 # path components added.
 # example: current design has an instance referencing 'lab_pin.sym'
 # after executing 'fix_symbols 1' the instance symbol reference
 # will be devices/lab_pin.sym. This will be done only on symbols
 # that are existing in the current search paths (there is
 # devices/lab_pin.sym in one of the search paths).
 fix_symbols n_dirs

 from_eng
 gaw_cmd
 gaw_echoline
 get_cell
 get_directory
 get_file_path

 # launch a terminal shell, if 'curpath' is given set path to 'curpath'
 get_shell

XSCHEM TCL PROCEDURES

194

 graph_add_nodes
 graph_add_nodes_from_list
 graph_change_wave_color
 graph_edit_properties
 graph_edit_wave
 graph_get_signal_list
 graph_show_measure
 graph_update_nodelist
 hash_string
 history
 housekeeping_ctx
 infowindow
 input_line
 inutile
 inutile_alias_window
 inutile_get_time
 inutile_help_window
 inutile_line
 inutile_read_data
 inutile_template
 inutile_translate
 inutile_write_data
 is_xschem_file
 key_binding
 launcher
 list_hierarchy
 list_tokens
 load_file_dialog
 load_file_dialog_mkdir
 load_file_dialog_up
 load_recent_file
 make_symbol
 make_symbol_lcc

 # find files into $paths directories matching $f
 # use $pathlist global search path if $paths empty
 # recursively descend directories
 match_file f [paths]

 myload_display_preview
 myload_getresult
 myload_place_symbol
 myload_set_colors1
 myload_set_colors2
 myload_set_home
 netlist
 next_tab
 no_open_dialogs
 order
 pack_tabs
 pack_widgets
 path_head
 pin_label
 prev_tab
 print_help_and_exit
 probe_net
 property_search

 # quit xschem closing all tabs/windows (including the first/main)
 # user has the option to cancel the closing of modified tabs/windows
 # if 'force' is given no confirmation is asked and modified content is lost.
 # the number of schematic views left over (in addition to main window)
 # is returned. If only one (the main view) is left command returns 0.

XSCHEM TCL PROCEDURES

195

 quit_xschem [force]

 raise_dialog
 read_data
 read_data_nonewline
 read_data_window
 reconfigure_layers_button
 reconfigure_layers_menu
 rectorder
 redef_puts

 # Given an absolute path 'symbol' of a symbol/schematic remove the path prefix
 # if file is in a library directory (a $pathlist dir)
 # Example: rel_sym_path /home/schippes/share/xschem/xschem_library/devices/iopin.sym
 # devices/iopin.sym
 rel_sym_path symbol

 reroute_inst
 reroute_net
 reset_colors
 restore_ctx
 return_release
 rotation
 save_ctx
 save_file_dialog
 save_sim_defaults
 schpins_to_sympins
 select_inst
 select_layers
 set_bindings
 set_env
 set_graph_linewidth
 set_initial_dirs
 set_missing_colors_to_black

 # set 'var' with '$val' if 'var' not existing
 set_ne var val

 # set_netlist_dir force [path]
 # if path is given set as new netlist path where netlists and simulations are done.
 # force should be always set to 1 unless you just want to query current path.
 # select_netlist_dir 0 will return current path (you can get with $netlist_dir as well)
 set_netlist_dir

 set_old_tk_fonts

 # when XSCHEM_LIBRARY_PATH is changed this function is called
 # by 'trace_set_paths' refresh and cache new library search paths.
 set_paths

 set_replace_key_binding

 # Initialize the tcl sim array variable (if not already set)
 # setting up simulator / wave viewer commands
 set_sim_defaults

 set_tab_names
 setglob
 setup_recent_menu
 setup_tabbed_interface
 setup_tcp_bespice
 setup_tcp_gaw
 setup_tcp_xschem
 setup_toolbar

XSCHEM TCL PROCEDURES

196

 sframe

 # show ERC (electrical rule check) dialog box
 show_infotext

 simconf
 simconf_add
 simconf_reset
 simconf_saveconf
 sim_is_ngspice
 sim_is_xyce
 sim_is_Xyce
 simulate
 simulate_button
 simuldir
 source_user_tcl_files
 sub_find_file
 sub_match_file
 swap_compare_schematics
 swap_tabs

 # show a dialog box asking user to switch undo bguffer from memory to disk
 switch_undo

 # evaluate a tcl command from GUI
 tclcmd

 tclcmd_ok_button
 tclpropeval
 tclpropeval2
 text_line
 textwindow
 to_eng
 tolist
 toolbar_add
 toolbar_hide
 toolbar_show

 # this function executes whenever XSCHEM_LIBRARY_PATH changes (registered
 # with a 'trace' command)
 trace_set_paths

 try_download_url
 update_div
 update_graph_node
 update_recent_file
 update_schematic_header
 view_current_sim_output
 waves
 write_data
 write_recent_file
 xschem_getdata
 xschem_server

SOME USEFUL SCRIPT EXAMPLES

SOME USEFUL SCRIPT EXAMPLES

197

The following examples show the xschem commands one by one. In general you should create small TCL procedures to
perform these tasks. This way you can optimize things, for example creating temporary variables holding the output of the
various xschem ... commands.

Instantiate a component and wire it up with specific nets on its terminals.•

Create a 5V Vvdd voltage source
xschem instance vsource.sym 100 100 0 0 {name=Vvdd value=5}

Attach labels, They will get the symbol pin labels
xschem select instance vvdd
xschem attach_labels

Instantiate a component and wire it up with specific nets on its terminals.

198

Select labels, unselect vsource and change positive and negative terminal
labels to VCC and GND respectively
The first item in the selected_set list is the first vsource terminal
(the positive terminal), the second one is the negative terminal.
At the end unselect all
xschem connected_nets
xschem select instance Vvdd clear
xschem setprop instance [lindex [xschem selected_set] 0] lab VCC
xschem setprop instance [lindex [xschem selected_set] 1] lab GND
xschem unselect_all

Instantiate a component and wire it up with specific nets on its terminals.

199

Disable a component in the schematic•

Add spice_ignore=true attribute
the component will be ignored in generated netlists.
xschem setprop instance Vvdd spice_ignore true

Disable a component in the schematic

200

Delete a component together with its attached nets•

select component, select attached nets and delete
this will also select wire segments if labels are attached to selected instance with wires.
xschem select instance Vvdd
xschem connected_nets

Delete a component together with its attached nets

201

Delete selection
xschem delete

Delete a component together with its attached nets

202

Delete dangling nets and labels•

If after some editing or deletions dangling nets are present
they can all be selected. Deletion may be done with a "xschem delete" command.
xschem select_dangling_nets

Change attributes of a group of components•

From this situation we want to select all MOS elements with L=2
and modify L (gate length) to 3

Delete dangling nets and labels

203

Do an exact search of elements with L=2
xschem search exact 1 L 2
a more precise search to avoid selecting unwanted elements might be:
xschem search regex 1 propstring "L=2\[\n\].*model=nfet"
the above command will do a regular expression search on the whole
instance property string (the special token propstring)
foreach i [xschem selected_set] { xschem setprop instance $i L 3}
xschem unselect_all

Change attributes of a group of components

204

Copy a components with its wired terminals•

From this situation we want to copy Vvdd to a different location
and change the instance name, voltage value and its positive terminal net name

select the desired instance
xschem select instance Vvdd
select attached wires
xschem connected_nets
Copy to clipboard
xschem copy
Paste selection 150 x-axis units to the right
xschem paste 150 0
First selected_set item is the voltage source (it was selected first)
xschem setprop instance [lindex [xschem selected_set] 0] name Vvpp
xschem setprop instance [lindex [xschem selected_set] 0] value 12
Following item is the net label attached to the first symbol pin
xschem setprop instance [lindex [xschem selected_set] 1] lab VPP

Copy a components with its wired terminals

205

Transform a component into a short•

We want to transform this voltage source into a short, passing the
negative label onto the positive terminal.
Warning: no net label must be present on the positive net, otherwise you end up with
an ERC error (multiple differnet labels on the same net)

Transform a component into a short

206

add spice_ignore=short attribute to instance
All pins of the instance will be shorted together to the same net.
Instance will be shown in red to indicate the short condition.
Option "Options->Show net name on symbol pins" is enabled and attribute
net_name=true is set on the resistor to show net names.
you see the left resistor terminal is GND now.

xschem setprop instance Vvdd spice_ignore short

Transform a component into a short

207

Move a selected portion of the schematic•

After selecting some objects...

... We move them by some X / Y quantities.
xschem move_objects 100 0

Move a selected portion of the schematic

208

Rotate a selected portion of the schematic•

After selecting some objects ...

... We rotate them clockwise around point 1100,-800 (shown with the red cross)
xschem rotate 1100 -800

Rotate a selected portion of the schematic

209

Flip a selected portion of the schematic•

After selecting some objects as before ...
... We flip them horizontally around point 1100,-800 (shown with the red cross)
xschem flip 1100 -800

Rotate in place a selected portion of the schematic•

After selecting some objects ...

Flip a selected portion of the schematic

210

... We rotate clockwise each object around their origins
the same command 'flip_in_place' is available for flipping horizontally.
xschem rotate_in_place

Rotate in place a selected portion of the schematic

211

Move a wired object•

After selecting some objects ...

... we select only the first segments attached to their pins ...
xschem connected_nets 2

... And then move the selection.

Move a wired object

212

xschem move_objects 100 0

Add and wire parallel devices•

Given this instance ...

... The following commands will copy-paste the object and move it

Add and wire parallel devices

213

using the "connect by kissing" feature: when separating connected
instances a wire is added.
xschem select instance Q1
xschem copy
xschem paste 0 0
xschem move_objects 120 0 kissing
xschem unselect_all

Replace symbols•

In the following schematic we want to replace the nfet3/pfet3 with nfet and pfet
that have the bulk connection pin.

Replace symbols

214

select all instances that match "fet_01v8" model name
xschem search regex 1 model {fet_01v8}
set f {}
foreach i [xschem selected_set] {
 # Replace fet3 with fet in symbol reference
 set newname [regsub {fet3} [xschem getprop instance $i cell::name] {fet}]
 xschem replace_symbol $i $newname $f
 # remove body attribute since it is now assigned to the bulk pin
 xschem setprop instance $i body fast
 # the f parameter is for optimzing (avoid pushing undo at each iteration)
 set f fast
}
xschem unselect_all
xschem redraw

Replace symbols

215

Replace symbols

216

PREV UP NEXT

XSCHEM REMOTE INTERFACE SPECIFICATION

GENERAL INFORMATIONS

XSCHEM embeds a tcl shell, when running xschem the terminal will present a tcl prompt allowing to send commands
through it. Most user actions done in the drawing window can be done by sending tcl commands through the tcl shell. A
tcp socket can be activated to allow sending remote commands to xschem, for this to work you must the
xschem_listen_port tcl variable in xschemrc, specifying an unused port number. Xschem will listen to this port
number for commands and send back results, as if commands were given directly from the tcl console.

XSCHEM implements a TCL xschem command that accepts additional arguments. This command implements all the
XSCHEM remote interface. Of course all Tck-Tk commands are available, for example, if this command is sent to
XSCHEM: 'wm withdraw .' the xschem main window will be withdrawn by the window manager, while 'wm state
. normal' will show again the window.
This command: 'puts $XSCHEM_LIBRARY_PATH' will print the content of the XSCHEM_LIBRARY_PATH tcl
variable containing the search path.

Handling TCP connection with multiple XSCHEM instances

Since the same TCP port can not be used in more than one process a mechanism is provided to handle multiple xschem
processes.
A setup_tcp_xschem <port> command is provided to set up another TCP port xschem will listen to, freeing the
initial port number set in the xschem_listen_port TCL variable, in the xschemrc configuration file.

If port is given and is an unused TCP port it will be used for following TCP communications.•
If port is not given use the port number defined in xschem_listen_port.•
If port number is given and is equal to 0 a free port number will be used.•

In all cases the xschem_listen_port returns the new port number that will be used and set the global
xschem_listen_port variable accordingly.

The following shell script fragment shows the commands to be used to negotiate with xschem another tcp port.
The nc (netcat) utility is used to pipe the commands to the tcp socket.
When starting xschem a fixed initial port number is always used (2021 by default), so it is always possible to remotely
communicate with xschem using this TCP port. Then the following commands can be sent to setup a new port number for
further communications, freeing the initial (2021) port number. If another xschem process is started it will again use the
initial port number, so no port number collisions occur.

start an xschem instance in background
schippes@asus:~$ xschem -b &
[1] 9342
negotiate a new port number instead of default 2021
schippes@asus:~$ a=$(echo 'setup_tcp_xschem 0' |nc localhost 2021)
schippes@asus:~$ echo "$a"
34279
Send a command using the new port number
schippes@asus:~$ b=$(echo 'xschem get current_name' |nc localhost "$a")
schippes@asus:~$ echo "$b"
untitled.sch

217

repeat above steps if you want additional xschem instances each listening to a different free tcp port.

 Handling TCP connection with multiple XSCHEM instances

218

UP

TUTORIAL: INSTALL XSCHEM
This short tutorial will illustrate all the steps needed to install XSCHEM on a linux system, getting the files from the SVN
repository.

Remove all previous xschem related data from old installs, i assume here previous stuff was in /usr/local, if
not change the root prefix accordingly:

schippes@mazinga:~$ sudo rm -rf /usr/local/share/xschem/ /usr/local/share/doc/xschem/
schippes@mazinga:~$ rm -f ~/xschemrc ~/.xschem/xschemrc

1.

Checkout xschem from the git repository into a build directory (I use xschem_git here):

git clone https://github.com/StefanSchippers/xschem.git xschem_git

2.

Configure xschem. In this tutorial we want xschem to be installed in /usr/local/bin, xschem data installed
in /usr/local/share/xschem, xschem documentation and example circuits installed in
/usr/local/share/doc/xschem, xschem system-wide component symbols installed in
/usr/local/share/xschem/xschem_library/devices, xschem user configuration stored in user's
home directory under ~/.xschem and xschem user libraries installed in ~/.xschem/xschem_library:

schippes@mazinga:~/xschem_git$./configure

which sets all default paths, it is equivalent to doing:

schippes@mazinga:~/xschem_git$./configure --prefix=/usr/local --user-conf-dir=~/.xschem \
--user-lib-path=~/.xschem/xschem_library \
--sys-lib-path=/usr/local/share/xschem/xschem_library/devices

3.

If all required libraries, header files and tools that are needed to build xschem are present on the system, the
configuration will end with this message (details may vary depending on the host system):

...

...
--- Generating build and config files
config.h: ok
Makefile.conf: ok
src/Makefile: ok

=====================
Configuration summary
=====================

Compilation:

4.

219

 CC: gcc
 debug: no
 profiling: no

Paths:
 prefix: /usr/local
 user-conf-dir: ~/.xschem
 user-lib-path: ~/share/xschem/xschem_library
 sys-lib-path: /usr/local/share/xschem/xschem_library/devices

Libs & features:
 tcl: -ltcl8.6
 tk: -ltcl8.6 -ltk8.6
 cairo: yes
 xrender: yes
 xcb: yes

Configuration complete, ready to compile.

schippes@mazinga:~/xschem_git$

Build xschem by running 'make'

schippes@mazinga:~/xschem_git$ make

5.

If compilation of source files completed with no errors xschem will be ready for installation:

schippes@mazinga:~/xschem_git$ sudo make install

Note that since we are installing in /usr/local we need root rights (sudo) for doing the installation.

6.

Test xschem by launching 'xschem' from the terminal:

schippes@mazinga:~/xschem_git$ cd
schippes@mazinga:~$ xschem

7.

 TUTORIAL: INSTALL XSCHEM

220

if /usr/local/bin is not in your PATH variable use the full xschem path:

schippes@mazinga:~$ /usr/local/bin/xschem

Close xschem (menu File - Exit)8.

Copy the xschemrc file in the trunk/src directory to the ~/.xschem directory. If ~/.xschem does not
exist create it with mkdir ~/.xschem

schippes@mazinga:~$ cp build/trunk/src/xschemrc ~/.xschem

The ~/.xschem/xschemrc is the user xschem configuration file. You may change it later to change xschem
defaults or add / remove / change component and schematic directories. For first tests it is recommended to leave
xschemrc as it is.

9.

Run xschem again to try some schematic load tests:10.

 TUTORIAL: INSTALL XSCHEM

221

schippes@mazinga:~$ xschem

Select menu File - Open and navigate to /usr/local/share/doc/xschem/examples:11.

Select 0_examples_top.sch and press 'OK':12.

 TUTORIAL: INSTALL XSCHEM

222

This schematic contains a set of sub-schematics. Select one of them by clicking it with the left mouse button
(test_lm324 in this example) and press the Alt-e key combination: another xschem window will be opened with
the schematic view of the selected symbol:

13.

 TUTORIAL: INSTALL XSCHEM

223

Click on the lm324 symbol, it can now be edited using the Alt-i key combination:14.

 TUTORIAL: INSTALL XSCHEM

224

Now close all xschem windows and restart a new xschem instance from terminal:

schippes@mazinga:~$ xschem

15.

 TUTORIAL: INSTALL XSCHEM

225

We want to create a simple circuit in this empty schematic window: press the Insert key (this is used to place
components) in the file selector navigate to /usr/local/share/xschem/xschem_library and select
res.sym:

16.

Lets add another component: press Insert key again and navigate to
/usr/local/share/doc/xschem/examples and select lm324.sym:

17.

 TUTORIAL: INSTALL XSCHEM

226

Select (click on it) the lm324 symbol and move it by pressing the m key:18.

 TUTORIAL: INSTALL XSCHEM

227

Place the lm324 component where you want in the schematic by placing the mouse and clicking the left button:19.

 TUTORIAL: INSTALL XSCHEM

228

The lm324.sym component has a schematic (.sch) representation, while the resistor is a primitive, it has only a
symbol view (.sym). you can see the schematic of the lm324 by selecting it and pressing Alt-e:

20.

 TUTORIAL: INSTALL XSCHEM

229

Close the lm324.sch window and view the symbol view of the resistor by selecting it and pressing Alt-i:21.

 TUTORIAL: INSTALL XSCHEM

230

This concludes the tutorial, if all the steps were successful there is a good
probability that xschem is correctly installed on your system.

 This concludes the tutorial, if all the steps were successful there is a good probability that xschem is correctly installed on your system.

231

UP

TUTORIAL: RUN A SIMULATION WITH XSCHEM
here some instructions to create a schematic and run a ngspice transient sim in XSCHEM:

Build and install xschem from svn head.1.
Create some empty directory (in my examples i use ~/x)2.
cd ~/x3.
~/bin/xschem rlc.sch (use the actual xschem install path). xschem will warn you that the rlc.sch file does not exist.
No problem.

4.

Press Insert key5.
Navigate in the file selector to .../share/xschem/xschem_library/devices6.
Select 'capa.sym' and press 'Open'7.
Select the capacitor, press 'm' and place it somewhere8.
Press 'Insert' again and place 'res.sym' and then again 'ind.sym'9.
Again, press 'Insert' and place 'vsource_arith.sym'10.
By selecting (left btn click) and moving ('m') place the components like in this picture:11.

Press the right mouse button on the capacitor and set its 'value=' attribute to 50nF:12.

232

Do the same for the inductor (10mH) and the resistor (1k)13.
Set the voltage source VOL to: "'3*cos(time*time*time*1e11)'" (include quotes, single and double):14.

 TUTORIAL: RUN A SIMULATION WITH XSCHEM

233

Pressing the 'w' key and moving the mouse you draw wires, wire the components as shown (press 'w', move the
mouse and click, this draws a wire segment):

15.

 TUTORIAL: RUN A SIMULATION WITH XSCHEM

234

Press 'Insert key and place one instance of 'lab_pin', then use the right mouse button to change its 'lab' attribute to
A:

16.

 TUTORIAL: RUN A SIMULATION WITH XSCHEM

235

Move the label as shown, (you can use 'Shift+F' to flip and 'Shift+R' to rotate), then using 'c' copy this pin label
and edit attributes to create the B and C labels, place all of these as shown:

17.

 TUTORIAL: RUN A SIMULATION WITH XSCHEM

236

Select the 'C' label and copy it as shown here, set its lab attribute to 0 (this will be the 0V (gnd node))18.

 TUTORIAL: RUN A SIMULATION WITH XSCHEM

237

Press 'Insert key, place the 'code.sym' symbol, set name and value attributes as follows:19.

 TUTORIAL: RUN A SIMULATION WITH XSCHEM

238

Cosmetics: add 'title.sym' move the circuit (by selecting it dragging the mouse and pressing 'm', if needed). Note
that you can do a 'stretch move' operation if you need move components keeping the wires attached; refer to the
xschem manual here

20.

 TUTORIAL: RUN A SIMULATION WITH XSCHEM

239

http://repo.hu/projects/xschem/xschem_man/commands.html

The circuit is ready for simulation: press 'netlist' the 'rlc.spice' will be generated in current dir.21.
If ngspice is installed on the system press 'Simulate':22.
In the simulator window type 'plot a b c':23.

 TUTORIAL: RUN A SIMULATION WITH XSCHEM

240

If you set 'Simulation -> Configure simulators and tools -> Ngspice Batch' and press 'Simulate' again the sim will
be run in batch mode, a 'rlc.raw' file will be generated and a 'rlc.out' file will contain the simulator textual output.

24.

 TUTORIAL: RUN A SIMULATION WITH XSCHEM

241

UP

TUTORIAL: INSTANCE BASED SELECTION OF SYMBOL
IMPLEMENTATION
It is quite common to have in a design multiple instances of the same subcircuit. Think for example of memory arrays and
decoder circuits. In some cases there are numerous instances of the same identical circuit. This leads to a very large netlist
and heavy simulation loads (both in time and space).
On the other hand typically only a small portion of these repetitive circuits are exercised in simulation. For example you
might want to simulate the selection only of the first 2 wordlines and the last 2 wordlines in a 1024 wordlines memory
array.

In these situations it might be useful to keep the full subcircuit implementation for the circuit parts that are exercised and
provide a simplified subcircuit for the parts that are idle during simulation. The simplified parts may just do the 'essential
work' like driving the idle value on the outputs and loading the inputs with an equivalent of the input capacitance, in order
to not alter the full circuit behavior.

schematic attribute on instance

Inside a symbol it is possible to specify an alternate schematic to descend into. For example if symbol inv.sym has
attribute schematic=inv2.sch then xschem will descend into inv2.sch instead of the default inv.sch. See
symbol_property_syntax man page. However these attributes at symbol level are applied to all instances of that symbol.
To enable instance based differentiation it is now possible to use this attribute in the instance.
A schematic=<schematic reference> attribute attached to an instance will specify the schematic
implementation to be used for that (and only that) instance of the subcircuit.
Example:
schematic=comp_65nm_parax.sch

The comp_65nm_parax.sch schematic may be something like this, that is a simplified circuit that just keeps a known
value on the outputs and adds some parasitic capacitance to the inputs.

242

spice_sym_def attribute on instance

A spice_sym_def=<...text...> attribute attached to an instance will specify some text that describes the
subcircuit (it can be a simplified spice subcircuit netlist or a spice .include line that gets the subcircuit from an external
file). This attribute on an instance must always be paired with a matching schematic attribute that specifies the
subcircuit name the instance is linked to.

Another possibility is to specify these attributes so the actual netlist will be included by the simulator.
schematic=comp_65nm_pex
spice_sym_def=".include /path/to/comp_65nm_pex.cir"

When a spice_sym_def is specified no alternate schematic is used for this instance. The definition is provided as text
(a piece of netlist, like for example a parasitic spice netlist extraction).

Putting this all together here is a schematic with 3 instances of comp_65nm.sym.

 schematic attribute on instance

243

x1 is the standard instance using the default comp_65nm.sch•
x2 is a simplified instance that just keeps the output low.•
x3 uses a parasitic extraction netlist (output will move slower).•

See the waveforms of the OUT, OUT2, OUT3 signals that behave accordingly.

Automatic port order setting from provided subcircuit netlist (Spice netlists
only)

If a spice_sym_def attribute is defined and has one of the following forms:

spice_sym_def="
.subckt opamp PLUS MINUS OUT VCC VSS
...
...
...
.ends
"

Or:

spice_sym_def=".include /path/to/subckt_file"

 spice_sym_def attribute on instance

244

Xschem will use the port order provided in the subckt line, either by looking directly into the attribute value or by loading
the file specified by the .include line. This way there will not be inconsistencies between instance line and subckt
definition in the circuit netlist. If for some reason the port list can not be read or pin names do not match xschem will use
the port order drom the .sym file.

Note: all the above concepts are valid for VHDL, Verilog and tEDAx netlists by replacing the spice_sym_def
attribute with vhdl_sym_def, verilog_sym_def and tedax_sym_def respectively.

Instance based SPICE model

In some cases a device is specified by a model and if model parameters can not be set in the instance line we need
multiple models if we want to use multiple devices with different model parameters. This can be done by specifying a
model in the following way:

type=mechanical_rotational
format="@name @pinlist inertia@name
.model inertia@name inertia_omega_tau J=@J"
template="name=N1 J=1.1"

Note the model name is given as inertia@name, this will make each model instance have a different and unique name.
This will generate an instance line:

N1 A B C inertiaN1
.model inertiaN1 inertia_omega_tau J=1.4

A better way hat handles also vectored instances is the following:

type=mechanical_rotational
format="@name @pinlist #inertia#@name
.model #inertia#@name inertia_omega_tau J=@J"
template="name=N1 J=1.1"

This way if you place a vectored instance name=N1[3:0] it will expand in netlist as:

N1[3] XAA XBB XCC inertiaN1[3]
N1[2] XAA XX XCC inertiaN1[2]
N1[1] XAA XX XCC inertiaN1[1]
N1[0] XAA XX XCC inertiaN1[0]
.model inertiaN1[3] inertia_omega_tau J=1.2
.model inertiaN1[2] inertia_omega_tau J=1.2
.model inertiaN1[1] inertia_omega_tau J=1.2
.model inertiaN1[0] inertia_omega_tau J=1.2

 Automatic port order setting from provided subcircuit netlist (Spice netlists only)

245

Subcircuits with SPICE models given as parameters

In general SPICE allows parameters to be passed to subcircuits. This is the case for dimensions, like W=2u, L=0.15u
that are passed to a subcircuit. The subcircuit uses these parameters (W, L) instead of numbers, making the subcircuit
truly parametric. However transistor models in a subcircuit can not be passed as parameters, the following inverter
instantiation is illegal:
X1 A Y inverter W=2u L=0.15u modn=cmosn modp=cmosp
To overcome this problem Xschem must generate multiple subcircuits. Consider the following inv3.sym symbol:

the symbol has the following attributes:

type=subcircuit
format="@name @pinlist @VCCPIN @VSSPIN @symname wn=@wn lln=@lln wp=@wp lp=@lp m=@m"
template="name=x1 m=1 modn=xmodn modp=xmodp
+ wn=10u lln=1.2u wp=10u lp=1.2u
+ VCCPIN=VCC VSSPIN=VSS"
extra="VCCPIN VSSPIN modn modp"

In above attributes two parameters are defined that specify transistor models, modn and modp, with default values (if
unspecified in instance) xmodn and xmodp. The inverter subcircuit transistors will use the @modn and @modp as SPICE
models:

 Subcircuits with SPICE models given as parameters

246

If an inv3.sym is placed n the schematic and no schematic=... parameter is given to create an instance based
subcircuit specialization:

The following netlist will be produced:

x2 LDCP3_B LDCP vcc vss inv3 wn=8.4u lln=2.4u wp=20u lp=2.4u m=1
...
...
.subckt inv3 y a VCCPIN VSSPIN wn=10u lln=1.2u wp=10u lp=1.2u
*.opin y
*.ipin a
m2 y a VCCPIN VCCPIN xmodp w=wp l=lp ad='wp *4.6u' as='wp *4.6u' pd='wp *2+9.2u' ps='wp *2+9.2u' m=1
m1 y a VSSPIN VSSPIN xmodn w=wn l=lln ad='wn *4.3u' as='wn *4.3u' pd='wn *2+8.6u' ps='wn *2+8.6u' m=1
.ends

However if another instance is placed:

 Subcircuits with SPICE models given as parameters

247

with following attributes:

name=x3 m=1
+ wn=8.4u lln=2.4u wp=20u lp=2.4u
+ VCCPIN=vcc VSSPIN=vss
schematic=@symname_1.sch
modn=yyn modp=yyp

the following netlist is generated:

x3 LDCP_B LDCP vcc vss inv3_1 wn=8.4u lln=2.4u wp=20u lp=2.4u m=1
...
...
.subckt inv3_1 y a VCCPIN VSSPIN wn=10u lln=1.2u wp=10u lp=1.2u
*.opin y
*.ipin a
m2 y a VCCPIN VCCPIN yyp w=wp l=lp ad='wp *4.6u' as='wp *4.6u' pd='wp *2+9.2u' ps='wp *2+9.2u' m=1
m1 y a VSSPIN VSSPIN yyn w=wn l=lln ad='wn *4.3u' as='wn *4.3u' pd='wn *2+8.6u' ps='wn *2+8.6u' m=1
.ends

You see that a second inv_1.sym is generated with changed models (yyn and yyp). This allows you to reuse the same
symbol with different model names. Xschem does the necessary work to duplicate the subcircuit, since model names can
not be set as parameters.

Another example of spice models given as parameters

Consider the following symbol instance:

 Another example of spice models given as parameters

248

with the following symbol definition

 Another example of spice models given as parameters

249

And the following schematic definition. Note the model syntax for the p-channel transistor (the n-channel transistor has
a similar model=modn@modeltag definition):

The following netlist will be produced

...

...
x4 LDCP4_B LDCP vcc vss inv4 wn=8.4u lln=2.4u wp=20u lp=2.4u m=1
...
...
* expanding symbol: inv4.sym # of pins=2
** sym_path: /home/schippes/.xschem/xschem_library/test_parametric_model/inv4.sym
** sch_path: /home/schippes/.xschem/xschem_library/test_parametric_model/inv4.sch
.subckt inv4 y a VCCPIN VSSPIN wn=10u lln=1.2u wp=10u lp=1.2u
*.opin y
*.ipin a
m2 y a VCCPIN VCCPIN modp18 w=wp l=lp ad='wp *4.6u' as='wp *4.6u' pd='wp *2+9.2u' ps='wp *2+9.2u' m=1
m1 y a VSSPIN VSSPIN modn18 w=wn l=lln ad='wn *4.3u' as='wn *4.3u' pd='wn *2+8.6u' ps='wn *2+8.6u' m=1
.ends
...
...

You see the @modeltag will be substituted looking first in the mos transistor attributes (but there is no definition there),
then in the containing symbol template attributes (and there is a modeltag=18 definition).

Now suppose you want to place another instance of inv4.sym but with a different modeltag: Since we know that spice
does not allow model names to be passed as parameters we need to specialize the inv4.sch subcircuit to a new
inv_1.sch subcircuit. Therefore we give the attribute schematic=inv4_1.sch to the second inv4 instance. We
also set there a different modeltag: modeltag=13

 Another example of spice models given as parameters

250

The netlist for this additional instance will be:

...

...
x5 LDCP5_B LDCP vcc vss inv4_1 wn=8.4u lln=2.4u wp=20u lp=2.4u m=1
...
...
* expanding symbol: inv4_1.sym # of pins=2
** sym_path: /home/schippes/.xschem/xschem_library/test_parametric_model/inv4.sym
** sch_path: /home/schippes/.xschem/xschem_library/test_parametric_model/inv4.sch
.subckt inv4_1 y a VCCPIN VSSPIN wn=10u lln=1.2u wp=10u lp=1.2u
*.opin y
*.ipin a
m2 y a VCCPIN VCCPIN modp13 w=wp l=lp ad='wp *4.6u' as='wp *4.6u' pd='wp *2+9.2u' ps='wp *2+9.2u' m=1
m1 y a VSSPIN VSSPIN modn13 w=wn l=lln ad='wn *4.3u' as='wn *4.3u' pd='wn *2+8.6u' ps='wn *2+8.6u' m=1
.ends
...
...

This way it is possible from a single symbol (inv4.sym in the example) to netlist multiple instances of it with different
models, in the example using a modeltag variable.

 Another example of spice models given as parameters

251

UP

TUTORIAL: SYMBOL AND SCHEMATIC GENERATORS
(aka PCELLS)
It is possible to insert a symbol by referencing a generator script instead of a .sym file. When inserting the symbol select
the All checkbox to see all files , select the generator script, then in the File/Search textbox add two parenthesis () (or
put required parameters in between, like (buf,250)). If you don't append the () xschem will do that for you.

The symbolgen.tcl generator in this example takes two parameters, a (buf) or a (inv) parameter to generate a buffer
or an inverter, respectively, and a output resistance value (a number) If no parameters are given (empty parentheses) a
buffer is generated with a default ROUT.

252

In this example a tcl script is used, you can use any language you like. The script only needs to parse the parameters (if
any) and outputs on standard output a regular xschem symbol file.

#!/bin/sh
the next line restarts using wish \
exec tclsh "$0" "$@"

set arg1 [lindex $argv 0]
set rout [lindex $argv 1]
puts stderr "arg1=|$arg1| $rout=|$rout|"
if { $arg1 eq {inv}} {
puts "v {xschem version=3.1.0 file_version=1.2}
K {type=subcircuit
xvhdl_primitive=true
xverilog_primitive=true
xvhdl_format=\"@@y <= not @@a after 90 ps;\"
xverilog_format=\"assign #90 @@y = ~@@a ;\"
format=\"@name @pinlist @symname wn=@wn lln=@lln wp=@wp lp=@lp\"
template=\"name=x1 wn=1u lln=2u wp=4u lp=2u\"
schematic=schematicgen.tcl(inv)}
L 4 -40 0 -20 0 {}
L 4 -20 -20 20 0 {}
L 4 -20 -20 -20 20 {}
L 4 -20 20 20 0 {}
L 4 30 -0 40 -0 {}
B 5 37.5 -2.5 42.5 2.5 {name=y dir=out }
B 5 -42.5 -2.5 -37.5 2.5 {name=a dir=in }
A 4 25 -0 5 180 360 {}
T {$arg1 $rout} -47.5 24 0 0 0.3 0.3 {}
T {@name} 25 -22 0 0 0.2 0.2 {}
T {y} 7.5 -6.5 0 1 0.2 0.2 {}

 TUTORIAL: SYMBOL AND SCHEMATIC GENERATORS (aka PCELLS)

253

T {a} -17.5 -6.5 0 0 0.2 0.2 {}
"
} else {
puts "v {xschem version=3.1.0 file_version=1.2}
K {type=subcircuit
xvhdl_primitive=true
xverilog_primitive=true
xvhdl_format=\"@@y <= @@a after 90 ps;\"
xverilog_format=\"assign #90 @@y = @@a ;\"
format=\"@name @pinlist @symname wn=@wn lln=@lln wp=@wp lp=@lp\"
template=\"name=x1 wn=1u lln=2u wp=4u lp=2u\"
schematic=schematicgen.tcl(buf)}
L 4 20 0 40 0 {}
L 4 -40 0 -20 0 {}
L 4 -20 -20 20 0 {}
L 4 -20 -20 -20 20 {}
L 4 -20 20 20 0 {}
B 5 37.5 -2.5 42.5 2.5 {name=y dir=out }
B 5 -42.5 -2.5 -37.5 2.5 {name=a dir=in }
T {$arg1 $rout} -47.5 24 0 0 0.3 0.3 {}
T {@name} 25 -22 0 0 0.2 0.2 {}
T {y} 7.5 -6.5 0 1 0.2 0.2 {}
T {a} -17.5 -6.5 0 0 0.2 0.2 {}
"
}

The generators/test_symbolgen.sch is a test schematic that places two instances of this symbol generator, one
as symbolgen.tcl(buf,@ROUT\) and one as symbolgen.tcl(inv,@ROUT\). The buf,@ROUT indicates
two parameters, one indicates if it is a buffer or an inverter, the second passes an additional parameter. Instead of using a
numeric literal the instance value ROUT is passed to the generator. A backslash is needed before the closing parenthesis
to avoid this parenthesis to be considered as part of the parameter. The schematic implementations of these symbols are
defined by the generator using a schematic attribute. The buffer will use schematicgen.tcl(buf) and the
inverter will use schematicgen.tcl(inv), these schematic names are referencing a schematic generator script
instead of regular schematic files. You see different schematics (see below picture) when descending the buf or inv
generator. See next section about schematic generators.

 TUTORIAL: SYMBOL AND SCHEMATIC GENERATORS (aka PCELLS)

254

The following is the extracted netlist from this example:

** sch_path: /home/schippes/xschem-repo/trunk/xschem_library/generators/test_symbolgen.sch
**.subckt test_symbolgen
x1 IN_INV IN symbolgen_tcl_inv_1200 wn=1u lln=2u wp=4u lp=2u
x3 IN_BUF IN symbolgen_tcl_buf_1200 wn=1u lln=2u wp=4u lp=2u
C1 IN_BUF 0 100f m=1
C2 IN_INV 0 100f m=1
**** begin user architecture code

.include models_rom8k.txt

.param vcc=3
vvcc vcc 0 dc 3
Vin in 0 pwl 0 0 100n 0 100.1n 3 200n 3 200.1n 0
.control
 save all
 tran 1n 300n uic
 write test_symbolgen.raw
.endc

**** end user architecture code
**.ends

* expanding symbol: symbolgen.tcl(inv,1200) # of pins=2
** sym_path: /home/schippes/xschem-repo/trunk/xschem_library/generators/symbolgen.tcl
** sch_path: /home/schippes/xschem-repo/trunk/xschem_library/generators/schematicgen.tcl
.subckt symbolgen_tcl_inv_1200 y a wn=1u lln=2u wp=4u lp=2u
*.opin y

 TUTORIAL: SYMBOL AND SCHEMATIC GENERATORS (aka PCELLS)

255

*.ipin a
m2 y a VCC VCC cmosp w=wp l=lp ad='wp *4.6u' as='wp *4.6u' pd='wp *2+9.2u' ps='wp *2+9.2u' m=1
m1 y a 0 0 cmosn w=wn l=lln ad='wn *4.3u' as='wn *4.3u' pd='wn *2+8.6u' ps='wn *2+8.6u' m=1
.ends

* expanding symbol: symbolgen.tcl(buf,1200) # of pins=2
** sym_path: /home/schippes/xschem-repo/trunk/xschem_library/generators/symbolgen.tcl
** sch_path: /home/schippes/xschem-repo/trunk/xschem_library/generators/schematicgen.tcl
.subckt symbolgen_tcl_buf_1200 y a wn=1u lln=2u wp=4u lp=2u
*.opin y
*.ipin a
m2 net1 a VCC VCC cmosp w=wp l=lp ad='wp *4.6u' as='wp *4.6u' pd='wp *2+9.2u' ps='wp *2+9.2u' m=1
m1 net1 a 0 0 cmosn w=wn l=lln ad='wn *4.3u' as='wn *4.3u' pd='wn *2+8.6u' ps='wn *2+8.6u' m=1
m3 y net1 VCC VCC cmosp w=wp l=lp ad='wp *4.6u' as='wp *4.6u' pd='wp *2+9.2u' ps='wp *2+9.2u' m=1
m4 y net1 0 0 cmosn w=wn l=lln ad='wn *4.3u' as='wn *4.3u' pd='wn *2+8.6u' ps='wn *2+8.6u' m=1
.ends

.end

This approach allows to create polymorphic symbols. Multiple parameters may be given to the generator script, like
symbolgen.tcl(inv,hv,100). Xschem will call the symbolgen.tcl script with the following command:
symbolgen.tcl inv hv 100 and take the standard output from the script as the symbol file to load and display.

Schematic generators (pcells)

The same approach used for symbol generators can be used for schematic generators. If you add a
schematic=schematicgen.tcl(buf,4) attribute to an instance xschem will look for a script named
schematicgeni.tcl in the search paths and call it with the given parameters (that is, execute the command
schematicgen.tcl buf 4) and read the produced output as a schematic file.

 Schematic generators (pcells)

256

 Schematic generators (pcells)

257

UP

TUTORIAL: CREATE A SYMBOL AND USE AN EXISTING
NETLIST
In some cases you have an existing netlist for a circuit block, perhaps from a previous design or from a layout parasitic
netlist extraction. In order to use this netlist in your design you might consider creating a symbol for it in xschem. This
symbol should match the I/O interface and name of the block netlist and does not need to have a corresponding schematic
since we want to use the existing netlist. One such example in the standard xschem distribution is the test_ne555.sch
circuit. The test schematic contains a symbol for the popular NE555 timer. The symbol does not provide any
implementation, the implementation is included in the top design as a .subckt netlist.

The symbol is implemented in the following way: the symbol attributes are:

258

type=primitive
format="@name @pinlist @symname"
template="name=x1"

the primitive value for the type attribute (instead of the more used subcircuit for symbols with a corresponding
implementation schematic) tells xschem to generate only the instance calls (the X lines for spice netlists) and not descend
into the symbol and not generate a .subckt for it.

The @pinlist is expanded into the netlist to the list of I/O ports. The order of the ports in this case is the order these
pins are created in the symbol. If you click a pin (the small red square box) a " n = <number>" appears in the status
line. This is the index of the pin. The first created pin starts from 0.

 TUTORIAL: CREATE A SYMBOL AND USE AN EXISTING NETLIST

259

Changing the pin ordering by altering the object sequence number

You can change the order the pins are stored into the .sym file. Start by clicking the pin that you want to have first
in the netlist, then press Shift-s, set the number to 0.

This will put the selected pin in first position. Then move to the pin you want in second position, repeat above
steps and assign to it index number 1, and so on for all the symbol pins. At the end save your symbol and this will
be the pin ordering in netlists. When netlist is produced this order will be used. If left pins in above example have
sequence numbers of (starting from the top) 0, 1, 2, 3 and right pins have sequence numbers (starting from the
bottom) 4, 5, 6, 7 the instance line in the netlist will be (check the net names with the schematic in the first image
above):

x1 VSS TRIG OUT VSUPPLY CTRL TRIG DIS VSUPPLY ne555

1.

 Changing the pin ordering by altering the object sequence number

260

Changing the pin ordering by using the sim_pinnumber attribute

If all symbol pins have a sim_pinnumber attribute this symbol will be netlisted (in all netlist formats) with
pins sorted in ascending order according to sim_pinnumber value. Start value of sim_pinnumber does not
matter (may start at 1 or 0) , it is used as the sort key. You can assign the sim_pinnumber attribute directly in the
symbol...

... Or you can assign these in the schematic pins, if you use the Make symbol from schematic function
('a' key) these attributes will be transferred to the symbol. The sim_pinnumber attributes that determine the
netlist port ordering are those defined in the symbol.

2.

 Changing the pin ordering by using the sim_pinnumber attribute

261

For sorting to happen all symbol pins must have a sim_pinnumber attribute. If some pins miss this attribute no
sorting is done and pin ordering will be unchanged, the stored order of symbol pins will be used (first created pin
netlisted first). If there are duplicate sim_pinnumber attributes (but all pins have this attribute) sorting will happen
but relative ordering or pins with identical sim_pinnumber is undefined.
As an example you may give sim_pinnumber=9999 on a symbol output and sim_pinnumber=1 on all
other pins if you only require the output pin to be netlisted at the end and don't care about the other pin ordering.
Explicitly specify port ordering in format (or verilog_format or
vhdl_format) string

Instead of the following format string that defines the netlist instance line syntax:

format="@name @pinlist @symname"

You can use the following:

format="@name @@GND @@TRIG @@OUT @@RESETB @@CTRL @@THRES @@DIS @@VCC @symname"

In this case you specify the port order one by one explicitly. This can be used for spice primitive devices, spice
subcircuits (like this example), VHDL and Verilog primitives. This method can NOT be used for VHDL and
verilog subcircuits since for these you do not provide a vhdl_format or verilog_format string. For these
use one of the first two methods. In general for VHDL and Verilog port order is not important since port-net
association is named and not positional.

3.

 Explicitly specify port ordering in format (or verilog_format or vhdl_format) string

262

Obtaining the pin ordering from the subcircuit definition specified via
spice_sym_def

For spice netlists if @pinlist is specified in format string and a symbol spice_sym_def attribute is used
then the order of the symbol ports will be obtained from the .subckt specified by spice_sym_def, either
directly or via a .include statement

The symbol_include.cir file has the following content:

* example of a subcircuit contained in a file

.subckt symbol_include Z VCC VSS
+ A B C W=10 L=1
...
...
.ends

 Obtaining the pin ordering from the subcircuit definition specified via spice_sym_def

263

And as a result the following circuit:

is netlisted in the following way, notice the net assignment in the x1 subcircuit call matches the order in the
symbol_include.cir file:

** sch_path: /home/schippes/.xschem/xschem_library/symbol_include/tb_symbol_include.sch
**.subckt tb_symbol_include XZ XVSS XVCC XC XB XA
*.opin XZ
*.ipin XVSS
*.ipin XVCC
*.ipin XC
*.ipin XB
*.ipin XA
x1 XZ XVCC XVSS XA XB XC symbol_include
**.ends

* expanding symbol: symbol_include.sym # of pins=6
** sym_path: /home/schippes/.xschem/xschem_library/symbol_include/symbol_include.sym
.include symbol_include.cir
.end

4.

 Obtaining the pin ordering from the subcircuit definition specified via spice_sym_def

264

Specifying subcircuit netlist

Add a .include <file> line in the top level

The first method is to declare the symbol as type=primitive (this is the case in all images above) and simply
add a .include /path/to/subcircuit.spice in the top level netlist:

1.

Use a spice_sym_def=".include <file>" line in the symbol

The second method is to declare the symbol type as subcircuit and add a spice_sym_def attribute in
the symbol. the value of this attribute will be copied verbatim to the netlist, so for the example shown here this
should do the job:
spice_sym_def=".include model_test_ne555.txt"

2.

Specifying subcircuit netlist

265

The produced netlist will be:

** sch_path: /home/schippes/xschem-repo/trunk/xschem_library/examples/test_ne555.sch
**.subckt test_ne555
x1 VSS TRIG OUT VSUPPLY CTRL TRIG DIS VSUPPLY ne555
...
...
* expanding symbol: ne555.sym # of pins=8
** sym_path: /home/schippes/xschem-repo/trunk/xschem_library/examples/ne555.sym
.include model_test_ne555.txt
.end

The advantage of this method is that the reference of the subcircuit is embedded in the symbol and if the symbol
is reused in another design the .include line travels with the symbol and you don't have to add the line in the top
level.
Completely specify a subcircuit in the format attribute of the symbol

The following set of symbol attrtibutes:

type=source
format="X@name @@in @@out sub_@name
.subckt sub_@name in out
@name out 0 V=@func
.ends sub_@name"
template="name=B1 FUNC="pow(V(in),2)""

3.

Use a spice_sym_def=".include <file>" line in the symbol

266

will create a sub_xxx subcircuit with a unique name for every symbol instance using the @name attribute (which
is indeed unique). This allows to build subcircuits with arbitrary parameters (a math expression in the example).

The problem of this approach is that it works by creating nested .subckt inside the parent schematic (which could
itself be a .subckt). Not all simulators support this (although Ngspice and Xyce seem to work OK with this).

Completely specify a subcircuit in the format attribute of the symbol

267

UP

TUTORIAL: CREATE AN XSCHEM SYMBOL
In this tutorial we will build a 4011 CMOS quad 2-input NAND symbol. This IC has 4 nand gates (3 pins each, total
4*3=12 pins + VDD,VSS power pins) This device comes in a dual in line 14 pin package.

268

 TUTORIAL: CREATE AN XSCHEM SYMBOL

269

Start xschem giving 4011-1.sym as filename:1.

use layer 4 (the default) to draw the following shapes, use l to draw lines and use Shift-c to draw arcs, use
Ctrl-Shift-c to draw circles. Arcs and circles are drawn by specifying start - end point and a 3rd way point.
You will need to change the grid snap to '5' for drawing the smallest objects using the g key. Be sure to restore
the grid snap to the default value with Shift-g as soon as you are done. Also ensure that the gate terminals are
on grid with the default '10' snap setting. Use the m key after selecting objects to move them around.

2.

 TUTORIAL: CREATE AN XSCHEM SYMBOL

270

Do NOT forget to reset the grid setting to the default (10) value as soon as you finished drawing small objects,
otherwise the rest of the objects will be all off grid making the symbol unusable

Create pins, select layer 5 from the Layers menu. Set grid snap to 2.5 to allow drawing small rectangles
centered on gate terminals. Start from the 'A' input of the nand gate (we assume A to be the left-top input), then
the 'B' input (the lower left input terminal), then the 'Z' output (the right terminal). If you click and hold the mouse
selecting the rectangles the 'w' and 'h' dimensions are shown. They should be equal to 5. remember to reset the
grid to default 10 when done.

Update: a more advanced command is now available to place a symbol pin: Alt-p

3.

 TUTORIAL: CREATE AN XSCHEM SYMBOL

271

Now when no object is selected press q to edit the symbol global attributes. Type the following text:

type=nand
tedax_format="footprint @name @footprint
device @name @device"
template="name=U1 device=CD4011B footprint=\"dip(14)\" numslots=4 power=VCC ground=GND"
extra="power ground"
extra_pinnumber="14 7"

Instead of the q key the attribute dialog box can also be displayed by double clicking the left mouse button

these attributes specify the gate type, the format for tedax netlist, the template attribute specifies default values
for attributes and defines pin connection for VDD and VSS that are associated to package pins 14 and 7. The
device attribute specifies the component name to be used in the tEDAx netlist (this is usually the name of the
IC as shown in the datasheet). The extra and extra_pinnumber attributes specify extra pin connections that
are implicit, not drawn on the symbol. This is one of the possible styles to handle power connections on slotted
devices.

4.

 TUTORIAL: CREATE AN XSCHEM SYMBOL

272

Press the t to place some text; set text v and h size to 0.2 and write @name; this will be replaced with the
instance name (aka refdes) when using the symbol in a schematic. Place a similar string with text @symname and
place it under the @name string.

5.

 TUTORIAL: CREATE AN XSCHEM SYMBOL

273

select the red pins (click the mouse close to the interior side of the rectangle corners) and press q, set attribute
name=A dir=in pinnumber=1:5:8:12 for the upper left pin, name=B dir=in
pinnumber=2:6:9:13 for the lower left pin, name=Z dir=out pinnumber=3:4:10:11 for the right
output pin. As you can see pin numbers 7 and 14 are missing from the list of pins; they used for VSS and VDD
power supplies, which are implicit (no explicit pins). Since we are creating a slotted device (an IC containing 4
identical nand gates) the pinnumber attribute for each pin specifies the pin number for each slot, so the
following: name=A dir=in pinnumber=1:5:8:12 specifies that pin A of the nand gate is connected to
package pin 1 for nand slot 1, to package pin 5 for nand slot 2 and so on.i The dir attribute specifies the
direction of the pin; XSCHEM supports in, out and inout types. These attributes are used mainly for digital
simulators (Verilog and VHDL), but specifying pin direction is good practice anyway.

6.

 TUTORIAL: CREATE AN XSCHEM SYMBOL

274

Instead of the q key the attribute dialog box can also be displayed by placing the mouse pointer over the pin
object and pressing the right mouse button

We want now to place some text near the gate pins to display the pin number: again, use the t key and place the
following text, with hsize and vsize set to 0.2:

7.

 TUTORIAL: CREATE AN XSCHEM SYMBOL

275

The complicated syntax of these text labels has the following meaning:
The @ is the variable expansion (macro) identifier, as usual.♦
The #0 specifies pin with index 0, this is the first pin we have created, the upper left nand input. The
index of a pin can be viewed by selecting the pin and pressing Shift-s.

♦

The pinnumber specifies the attribute we want to be substituted with the actual value when placing the
gate in a schematic as we will see shortly.

♦

There is another syntax that can be used to display pin numbers, instead of specifying the pin index in XSCHEM
list (that reflects the creation order) you can reference pins by their name; The only reason to use the previous
syntax with pin index numbers is efficiency when dealing with extremely big symbols (SoC or similar high pin
count chips).

8.

 TUTORIAL: CREATE AN XSCHEM SYMBOL

276

The symbol is now complete; save it and close XSCHEM. Now open again xschem with an empty schematic, for
example xschem test.sch. Press the Insert key and place the 4011-1 symbol:

We see that all pin numbers are shown for each pin; this reminds us that this is a slotted device! slotted devices
should specify the slot number in the instance name so, select the component, press q and change the U1 name
attribute to U1:1. You can also remove the .sym extension in the 'Symbol' entry of the dialog box, for more
compactness:

As you can see now the slot is resolved and the right pin numbers are displayed. Now select and copy the
component (use the c key), and change the name attribute of the new copy to U1:3:

9.

 TUTORIAL: CREATE AN XSCHEM SYMBOL

277

Now draw some wires, for example to create an SR latch as shown, use the w key to draw wires; when done with
the wiring insert a net label by pressing the Insert key and navigating to
.../share/xschem/xschem_library/devices (the XSCHEM system symbol library) and selecting
lab_pin:

Place 4 of these lab_pin symbols and set their lab attribute to S_, R_, Q, Q_ respectively; place the 4
labels as shown (use the Shift-f key to flip the Q, Q_ labels):

10.

 TUTORIAL: CREATE AN XSCHEM SYMBOL

278

The test circuit for this tutorial is now complete: its time to extract the tEDAx netlist; press the Shift-A key to
enable showing the netlist window, press Shift-v multiple times to set the netlisting mode as shown in the
bottom status bar to tedax, and finally press the Netlist button located in the top-right region of the window:

This is the resulting netlist you should get:

tEDAx v1
begin netlist v1 test
conn Q U1 8

11.

 TUTORIAL: CREATE AN XSCHEM SYMBOL

279

pinslot U1 8 3
pinidx U1 8 1
pinname U1 8 A
conn R_ U1 9
pinslot U1 9 3
pinidx U1 9 2
pinname U1 9 B
conn S_ U1 1
pinslot U1 1 1
pinidx U1 1 1
pinname U1 1 A
conn Q_ U1 10
pinslot U1 10 3
pinidx U1 10 3
pinname U1 10 Z
conn Q_ U1 2
pinslot U1 2 1
pinidx U1 2 2
pinname U1 2 B
pinslot U1 11 4
pinidx U1 11 3
pinname U1 11 Z
conn Q U1 3
pinslot U1 3 1
pinidx U1 3 3
pinname U1 3 Z
pinslot U1 4 2
pinidx U1 4 3
pinname U1 4 Z
pinslot U1 12 4
pinidx U1 12 1
pinname U1 12 A
pinslot U1 13 4
pinidx U1 13 2
pinname U1 13 B
pinslot U1 5 2
pinidx U1 5 1
pinname U1 5 A
conn VCC U1 14
pinname U1 14 power
pinslot U1 6 2
pinidx U1 6 2
pinname U1 6 B
conn GND U1 7
pinname U1 7 ground
footprint U1 dip(14)
device U1 CD4011B
end netlist

This concludes the tutorial; of course this is not a complete circuit, connectors are missing among other things,
but the basics of creating a new component should now be less obscure.

 TUTORIAL: CREATE AN XSCHEM SYMBOL

280

UP

TUTORIAL: Manage XSCHEM design / symbol libraries
There are various ways to describe symbol locations in xschem,

first approach: define a XSCHEM_LIBRARY_PATH that is a list of paths to last level directories containing .sym
/.sch files

•

second approach: define a XSCHEM_LIBRARY_PATH that is a list of paths one or more levels above the
directories containing .sym/.sch files

•

Third approach: define a XSCHEM_LIBRARY_PATH that is a hierarchy of paths, zero, one or more levels above
the directories containing .sym/.sch files. If you have a directory tree where each directory level may contain .sch
and .sym files you should list the deepest directories first so xschem will start searching for a symbol reference in
the deepest levels first.

•

In the first approach a 'npn.sym' symbol placed in a schematic will be saved as 'npn.sym' in the .sch file, when loading
back the parent schematic xschem will go through the elements of XSCHEM_LIBRARY_PATH and look for a directory
containing npn.sym.

In the second approach the 'npn.sym' will be saved as 'devices/npn.sym' (assuming devices/ is the directory
containing this symbol) . This is because the XSCHEM_LIBRARY_PATH is pointing to something like
/some/path/xschem_library/ and xschem_library/ contains devices/ (names are just given as
examples, any dir name is allowed for xschem_library/ and devices/)

In the third approach 'npn.sym' or some other dir/symbol.sym will be searched in all path elements listed in
XSCHEM_LIBRARY_PATH, by appending the symbol reference to each path element until a file is found. the first match
is used. This is the reason you should put the deepest directories first in XSCHEM_LIBRARY_PATH. If
/a/b/c/dir/symbol.sym is inserted in the design and XSCHEM_LIBRARY_PATH contains the following
definitions:
set XSCHEM_LIBRARY_PATH /a/b/c /a/b /a
the symbol reference will be just dir/symbol.sym, since appending the symbol reference to the first path an existing
file is found. If the following definition for XSCHEM_LIBRARY_PATH is given instead:
set XSCHEM_LIBRARY_PATH /a /a/b/ /a/b/c
then the symbol reference will be /b/c/dir/symbol.sym since the first path component was found in the absolute
path of the inserted symbol and the only matching prefix is removed from the relative symbol reference that will be saved
in the schematic.

The first approach is preferred by pcb hobbysts, people working on small designs. the second approach is preferred for
big designs where a one or more directory level indirection is desired for symbols, so any symbol in xschem is given as
'libname/symname.sym' (one level directory specification in symbol references) or
'libgroup/libname/symname.sym' (2 level directory specification in symbol references) instead of just
'symname.sym'

SYMBOL LOOKUP (ie when loading a schematic):
The absolute path of the symbol reference is obtained by appending the symbol reference to the
XSCHEM_LIBRARY_PATH paths in the order they are listed until the resulting file is found in the machine
filesystem. The first match is used.
SYMBOL INSERTION (ie when drawing a schematic and inserting a component):
The relative symbol reference that is saved in the schematic file is obtained by removing the first occurrence of a
matching path prefix from the ones listed in XSCHEM_LIBRARY_PATH in the order they are listed. The first
matching prefix is used to determine the relative symbol reference. This is the reason deepest path elements must be

281

listed first in XSCHEM_LIBRARY_PATH if you want the shortest possible symbol relative reference to be saved in the
schematic file.

For VLSI / big designs I strongly suggest using the second approach, just as an example i have the following dirs:

 ~/share/xschem/xschem_library/
 containing:
 devices/
 TECHLIB/

 ~/xschem_library/
 containing:
 stdcell_stef/

 ~/share/doc/xschem/
 containing:
 library_t9/
 dram/

then in my xschemrc i have the following:

set XSCHEM_LIBRARY_PATH \
$env(HOME)/share/xschem/xschem_library:$env(HOME)/share/doc/xschem/:$env(HOME)/xschem_library

You may choose either method, but please be consistent throughout your
design.

Change project setup runtime
Since Xschem now handles multiple windows or tabs, it is desirasble to load schematics from different projects into a
single running instance of xschem. This is not difficult to do and you might want to write your own procedure into your
xschemrc to automate this. Lets suppose you open a new schematic tab. After opening the new tab go to the xschem
prompt in the terminal you launched Xschem from, and redefine your XSCHEM_LIBRARY_PATH:

 set XSCHEM_LIBRARY_PATH {} ;# clear previous definitions
 append XSCHEM_LIBRARY_PATH :${XSCHEM_SHAREDIR}/xschem_library ;# for devices/
 append XSCHEM_LIBRARY_PATH :/home/schippes/share/pdk/sky130A/libs.tech/xschem ;# for sky130 libs
 # project specific variables (either tcl variables or shell variables via the TCL env() array)
 set PDK_ROOT /home/schippes/share/pdk
 set PDK sky130A
 set SKYWATER_MODELS ${PDK_ROOT}/${PDK}/libs.tech/ngspice
 set SKYWATER_STDCELLS ${PDK_ROOT}/${PDK}/libs.ref/sky130_fd_sc_hd/spice

At this point your new tab will work with the new defnitions while the previous tab will continue with its previous
settings.

you should create a small procedure and put int into your xschemrc so you will just need to type the procedure name:

 proc set_sky130 {} {
 ## XSCHEM_SHAREDIR points to XSCHEM install path, example: /usr/local/share/xschem
 ## USER_CONF_DIR is usually ~/.xschem
 ## env may be used to set environment variables, like:

 Change project setup runtime

282

 ## set env(PDK_ROOT)
 global XSCHEM_LIBRARY_PATH XSCHEM_SHAREDIR USER_CONF_DIR env
 ## Other global TCL variables listed here depend on the project setup.
 global PDK_ROOT PDK SKYWATER_MODELS SKYWATER_STDCELLS

 # project specific variables (either tcl variables or shell variables via the TCL env() array)
 set PDK_ROOT /home/schippes/share/pdk
 set PDK sky130A
 set SKYWATER_MODELS ${PDK_ROOT}/${PDK}/libs.tech/ngspice
 set SKYWATER_STDCELLS ${PDK_ROOT}/${PDK}/libs.ref/sky130_fd_sc_hd/spice

 set XSCHEM_LIBRARY_PATH {} ;# clear previous definitions
 append XSCHEM_LIBRARY_PATH :${XSCHEM_SHAREDIR}/xschem_library ;# for devices/
 append XSCHEM_LIBRARY_PATH :${PDK_ROOT}/${PDK}/libs.tech/xschem
 }

 Change project setup runtime

283

UP

TUTORIAL: Use Bus/Vector notation for signal bundles /
arrays of instances
XSCHEM has the ability to use a compact notation to represent signal bundles. There is no specific 'bus' entity, in
XSCHEM a bus is simply a wire with a label representing a bundle of bits, the syntax is explained below. Normally a net
label assigns a name to a wire, for example 'ENABLE', 'RESET', 'CLK' and so on, however more complex formats are
available to describe multiple bits.

AAA,BBB,CCC: described a bundle of 3 signals, AAA, BBB, CCC.•
AAA[3:0]: describes the set AAA[3],AAA[2],AAA[1],AAA[0]. The form AAA[3:0] and
AAA[3],AAA[2],AAA[1],AAA[0] are exactly equivalent.

•

AAA[1:0],BBB[5:4]: describes the bundle: AAA[1],AAA[0],BBB[5],BBB[4].•
AAA[6:0:2]: describes the bundle AAA[6],AAA[4],AAA[2],AAA[0].•
AAA[0:1:4:3]: describes the bundle AAA[0],AAA[1],AAA[4],AAA[5],AAA[8],AAA[9].
The meaning of the 4 parameters are: start:end:offset:repetitions.

•

2*AAA[1:0]: describes the bundle AAA[1],AAA[0],AAA[1],AAA[0].•
AAA[1:0]*2: describes the bundle AAA[1],AAA[1],AAA[0],AAA[0].•
2*(AAA[1:0],BBB): describes the bundle AAA[1],AAA[0],BBB,AAA[1],AAA[0],BBB.•
(AAA[1:0],BBB)*2: describes the bundle AAA[1],AAA[1],AAA[0],AAA[0],BBB,BBB.•

All the above notations are perfectly valid label net name attributes.
In a very similar way multiple instances can be placed in a schematic setting the 'name' attribute to a vector notation.
For example in picture below x22[15:0] represents 16 inverters with names x22[15],x22[14],...,x22[0].

284

Recently a new notation has been added for buses that expands without putting brackets:

AAA[3..0]: describes the set AAA3,AAA2,AAA1,AAA0. The form AAA[3..0] and
AAA3,AAA2,AAA1,AAA0 are exactly equivalent.

•

AAA[1..0],BBB[5..4]: describes the bundle: AAA1,AAA0,BBB5,BBB4.•
AAA[6..0..2]: describes the bundle AAA6,AAA4,AAA2,AAA0.•
2*AAA[1..0]: describes the bundle AAA1,AAA0,AAA1,AAA0.•
AAA[1..0]*2: describes the bundle AAA1,AAA1,AAA0,AAA0.•
2*(AAA[1..0],BBB): describes the bundle AAA1,AAA0,BBB,AAA1,AAA0,BBB.•
(AAA[1..0],BBB)*2: describes the bundle AAA1,AAA1,AAA0,AAA0,BBB,BBB.•

 TUTORIAL: Use Bus/Vector notation for signal bundles / arrays of instances

285

In following picture there is a main 72 bit bus (the vertical thick wire) and bus ripper symbols
(devices/bus_connect_nolab.sym) are used to take slices of bits from the main bus. Wire labels are used to
define bus slices. To display thick wires for busses, select all wire segments, then press 'q' and add attribute bus=true.

following picture shows an istantiation of 6 inverters:

The generated spice netlist is the following:

...
xinv5 BB0 AA5 bf
xinv4 BB1 AA4 bf
xinv3 BB2 AA3 bf
xinv2 BB3 AA2 bf
xinv1 BB4 AA1 bf
xinv0 BB5 AA0 bf
...

 TUTORIAL: Use Bus/Vector notation for signal bundles / arrays of instances

286

Example of a more complex bus routing. main bus is a bundle of 2 buses: DATA_A[0..15] and DATA_B[0..15]

BUS TAPS

A new symbol, devices/bus_tap.sym has been creted to make bus connections more flexible. This is a 2 pin
symbol, one pin must be connected to the bus wire, the other pin only defines the bus slice, indicating only the range of
bits and not the complete bus name:

 BUS TAPS

287

As you see in the picture a lab attribute is given that specifies only a bit range, like [13] or [7:0]. The net attached to
the 'bus slice' end of the bus_tap.sym will get the base name of the bus (DATA in the example) and the index, that is
DATA[13] In the example below the menu Options->Show net names on symbol pins / floaters has
been enbled to see (the pink texts) the resulting net names.

A complete example examples/test_bus_tap.sch shows various possible bus_tap.sym use cases.

 BUS TAPS

288

 BUS TAPS

289

UP

TUTORIAL: Backannotation of NGSPICE simulation
operating
point data into an XSCHEM schematic
The objective of this tutorial is to show into the schematic the operating point data (voltages currents, other electrical
parameters) of a SPICE simulation done with the Ngspice simulator. This tutorial is based on the cmos_example.sch
example schematic located in the examples/ directory. Start Xschem from a terminal since we need to give some
commands in this tutorial.

SETUP

Select the 'STIMULI' code block (click on it) and edit its attributes (press q or Shift-q):

.temp 30
** models are generally not free: you must download
** SPICE models for active devices and put them into the below
** referenced file in netlist/simulation directory.
.include "models_cmos_example.txt"
.control
op
save all
write cmos_example.raw
.endc

The important parts are in red in above text. This ensures all variables are saved into the raw file. These instructions are
for an interactive ngspice run.

290

https://sourceforge.net/projects/ngspice/

You may have other simulations saved in the raw file (dc, tran, ac) however one operating point must also be present:

.temp 30
** models are generally not free: you must download
** SPICE models for active devices and put them into the below
** referenced file in netlist/simulation directory.
.include "models_cmos_example.txt"
.control
save all
dc vplus 2.3 2.7 0.001
write cmos_example.raw
set appendwrite
op
save all
write cmos_example.raw
.endc

When done open the Simulation-> Configure simulators and tools dialog box and ensure the
Ngspice simulator is selected (not Ngspice batch). Also ensure the spice netlist mode is selected (Options ->
Spice netlist).

SIMULATION

If you now press the Netlist followed by the Simulate button simulation should complete with no errors.

 SETUP

291

You can close the simulator since we need only the cmos_example.raw file that is now saved in the simulation
directory (usually ~/.xschem/simulations/cmos_example.raw).
Now verify that xschem is able to read the raw file: issue this command in the xschem console:
xschem annotate_op

xschem [~] xschem annotate_op
Raw file data read: /home/schippes/.xschem/simulations/cmos_example.raw
points=1, vars=38, datasets=1
0
xschem [~]

If there are no errors we are ready and set.
you can load also a specific file:

xschem [~] xschem annotate_op $netlist_dir/cmos_example_ngspice.raw

ANNOTATION

The annotation procedure is based on a pull method: the probe objects have atributes or tcl commands embedded that
fetch simulation data from a table that has been read by Xschem. In addition to specific probe elements also net labels will
show voltage values and ammeters / voltage sources will show currents.

To ensure all currents are saved modify the STIMULI attributes as follows:

.temp 30
** models are generally not free: you must download
** SPICE models for active devices and put them into the below
** referenced file in netlist/simulation directory.
.include "models_cmos_example.txt"

 SIMULATION

292

.option savecurrents

.save all

.control
op
write cmos_example.raw
.endc

Remove all previous probe elements and place some devices/ngspice_probe.sym components and some
devices/ngspice_get_value.sym components. the ngspice_probe.sym is a simple voltage viewer and must be
attached to a net. The ngspice_get_value.sym displays a generic variable stored in the raw file. This symbol is usually
placed next to the referenced component, but does not need to be attached to any specific point or wire. Edit its attributes
and set its node attribute to an existing saved variable in the raw file.

ngspice_get_value.sym debugging tips:

See all available devices in ngspice with display•
See all values for a device with print @somedevice•

eg print @m.xm6.xmain1.msky130_fd_pr__nfet_g5v0d16v0__base[vth]♦
Some values must explicitly be saved before the analysis to be available for annotation.•

eg save @m.xm6.xmain1.msky130_fd_pr__nfet_g5v0d16v0__base[vth]♦
Usually you'll need to wrap your value with v() in the symbol properties in xschem.•

eg node=v(@m.xm6.xmain1.msky130_fd_pr__nfet_g5v0d16v0__base[vth])♦

 ANNOTATION

293

Run again the simulation and the xschem annotate_op command and values will be updated.

 ANNOTATION

294

You can add additional variables in the raw file , for example modifying the .save instruction:
.save all @m4[gm] @m5[gm] @m1[gm]

 ANNOTATION

295

Data annotated into the schematic using these components allows more simulation parameters to be viewed into the
schematic, not being restricted to currents and voltages. Since these components get data using a pull method data is not
persistent and not saved to file. After reloading the file just do a xschem annotate_op to view data again.

There is one last probe component, the devices/ngspice_get_expr.sym. This is the most complex one, and thus
also the most flexible. It allows to insert a generic tcl expression using spice simulated data to report more complex data.
In the example below this component is used to display the electrical power of transistor m3, calculated as V(GN) *
Id(m3).

 ANNOTATION

296

you can wrap the whole expression inside a [to_eng ...] to have the value displayed in engineering form using the
usual SPICE suffixes (example: 131u for 131e-6)

The example shown below uses this component to display a (meaningless, but shows the usage) gm ratio of 2 transistors:

 ANNOTATION

297

The syntax is a bit complex, considering the verbosity of TCL and the strange ngspice naming syntax, however once a
working one is created changing the expression is easy.

To avoid the need of typing commands in the xschem console a launcher component devices/launcher.sym can be
placed with the tcl command for doing the annotation. Just do a Ctrl-Click on it to trigger the annotation.

 ANNOTATION

298

UP

TUTORIAL: Use symgen.awk to create symbols from
'djboxsym' compatible text files
The symgen.awk utility (installed in (install_root)/share/xschem) generates xschem symbol files from a
textual description that is backward compatible to DJ Delorie's perl djboxsym symbol generator for the geda schematic
editor (gschem, lepton-schematic). A sample sample.symdef file is the following:

This is a sample symbol definition for documenting djboxsym. Some
of the pins have been intentionally mistyped in order to demonstrate
all combinations of flags. DO NOT USE AS A CP2201 REFERENCE!

[labels]

SAMPLE
refdes=U?
DEMO ONLY
! copryright=2006 DJ Delorie
! author=DJ Delorie
! uselicense=unlimited
! distlicense=GPL
! device=sample device
! description=ethernet controller
! footprint=QFN-28

[left]
24 ! CS
.bus
11 AD0
12 AD1
13 AD2
14 AD3
15 AD4
16 AD4
17 AD6
18 AD7

21 > ALE
22 ! RD/(DS)
23 !> WR/(R/!W)

25 ! INT
29 _RESET_

[right]
10 ! RST
26 > MOTEN
1 !> LA

6 TX+
7 TX-

5 RX+
4 RX-

28 XTAL1
27 XTAL2
[top]

299

http://www.gedasymbols.org/user/dj_delorie/tools/djboxsym.html

3 AV+
8 VDD1
30 !> _CLK_
19 VDD2

[bottom]
2 AGND
9 DGND1
20 DGND2

Creating the symbol is simple:
<install_path>/share/xschem/symgen.awk sample.symdef > sample.sym
The resulting symbol is shown here under, side-compared with the same symbol generated by djboxsym for gschem:

Another sample2.symdef file specifically created to generate a perfectly valid xschem symbol (including attributes
for spice netlisting) is the following:

<pinnumber> <direction>[<circle><edge_trigger>] <name>
circle: !
edge_trigger: >
direction is mandatory: i=input, o=output, b=bidirectional (inout)

TUTORIAL: Use symgen.awk to create symbols from 'djboxsym' compatible text files

300

[labels]
FAKE IC TO TEST XSCHEM SYMGEN
STEFAN FREDERIK SCHIPPERS
@symname
@name
! type=subcircuit
! format="@name @pinlist @symname"
! template="name=x1"
--vmode
[left]
24 i! CHIP_SELECT
.bus
11 i AD0
12 i AD1
13 i AD2
14 i AD3
15 i AD4
16 i AD5
17 i AD6
18 i AD7

21 i> ALE

22 i! _RD_
23 i!> _WR_
25 i! INTERRUPT_REQUEST
[right]
10 i! RST
26 i> MOTEN
1 i!> LA
6 o TXP
7 o TXM

5 i RXP
4 i RXM
28 i XTAL1
27 i XTAL2
[top]
3 io AVP
.bus
29 o! DATA0
30 o! DATA1
31 o! DATA2
32 o DATA3
33 o DATA4
34 o! DATA5
35 o! DATA6
36 o! DATA7
37 o! DATA8
38 o DATA9
39 o> DATA10
40 o> DATA11
41 o> DATA12
42 o DATA13
43 o DATA14
44 o DATA15

8 io VDD1
19 io VDD2
45 io VDD_ANALOG
46 io VDD_DIGITAL
[bottom]
2 io! GND_ANALOG
47 io! GND_DIGITAL

TUTORIAL: Use symgen.awk to create symbols from 'djboxsym' compatible text files

301

9 io> DGND1
20 io> GND2

some extensions of xschem's symdef text file format with respect to original djboxsym format:

In addition to optional ! (inversion bubble) and > (edge trigger) specifiers XSCHEM's symgen.awk accepts a
pin direction specifier, i, o, io and p (latter one for power pins, treated by xschem as inout) for 'input', 'output',
'inout' (bidirectional) direction and 'power'. These attributes are fundamental for digital simulations (Verilog,
Vhdl). If this specifier is missing (as it is in djboxsym .symdef files) then the direction is assumed as b (inout).
XSCHEM does not have any specific direction for power pins so they are treated as 'inout'
Port direction specifiers are indeed supported also by 'djboxsym' but not documented.

•

Option --vmode given before any pin declaration like in djboxsym sets vertical orientation for top / bottom
pins.

•

.bus specifier can be used for all pin orientations, left, top, right, bottom if --vmode is enabled, otherwise it
will affect only spacing of left/right pins.

•

Option --auto_pinnumber given before any pin declaration lets symgen.awk automatically add pin
numbers, so the first field may be omitted

•

TUTORIAL: Use symgen.awk to create symbols from 'djboxsym' compatible text files

302

http://www.gedasymbols.org/user/dj_delorie/tools/djboxsym.html

Edge trigger (>) and inversion bubble (!) specifiers are drawn on all sides, not only left/right.•
Option --hide_pinnumber given before any pin declaration avoids pin numbers in generated symbol. If this
option is used it is mostly done together with --auto_pinnumber to get rid of pin numbers completely.

•

TUTORIAL: Use symgen.awk to create symbols from 'djboxsym' compatible text files

303

UP

TUTORIAL: Translate GEDA gschem/lepton-schematic
schematics and symbols to xschem
The gschemtoxschem.awk utility (installed in (install_root)/share/xschem) generates xschem schematic
and symbol files from their GEDA equivalents.

First of all, note that xschem comes with all geda symbols already translated to xschem.

Create an empty directory where you want your xschem schematics/symbols, inside this directory create an xschemrc
file with the following path added, if not already done in your ~/.xschem/xschemrc file:

append XSCHEM_LIBRARY_PATH :${XSCHEM_SHAREDIR}/../doc/xschem/gschem_import/sym

Next, in this directory create a convert.sh script and make it executable:

#!/bin/bash

remove empty glob specifications *.sym or *.sch
shopt -s nullglob

for file in directory_with_geda_files/*.{sym,sch}
do
 /path_to_xschem_install_root/share/xschem/gschemtoxschem.awk $file > $(basename -- $file)
done

Note that you have to set the correct path for gschemtoxschem.awk depending on your xschem installation and set
the correct path for the directory (directory_with_geda_files in above example) containing the geda files.
The current directory will be populated with xschem schematics/symbols with the same name as their GEDA equivalents.
Incidentally xschem and gschem use the same file extensions (.sym, .sch), so be careful not to mix xschem and gschem
files.

Below an example of a schematic and a symbol shown both in xschem and lepton-schematic (gschem fork)

304

TUTORIAL: Translate GEDA gschem/lepton-schematic schematics and symbols to xschem

305

TUTORIAL: Translate GEDA gschem/lepton-schematic schematics and symbols to xschem

306

TUTORIAL: Translate GEDA gschem/lepton-schematic schematics and symbols to xschem

307

TUTORIAL: Translate GEDA gschem/lepton-schematic schematics and symbols to xschem

308

Notes for schematics targeted for spice simulations

Most of geda schematics do not define precise rules for spice netlisting. primitive symbols are symbols that do not have a
schematic representation, examples are the nmos and pmos transistors in first schematic. They should have a format
property that defines how the symbol should be translated to spice netlist. See the relevant schem manual page.
Subcircuit symbols are symbols that translate to spice as a .subckt calls. An example is the LATESN symbol in above
picture. Xschem convention is that subcircuit symbol instances have a name attribute that begins with 'X' or 'x'. As with
primitive symbols they also have a format global attribute, but the type=subcircuit attribute states it is a
subcircuit instance. After producing the instance call (for example X1 net1 net2 net3 ...
subcircuit_name)) for all instances of this symbol a .subckt expansion is also produced:

.subckt subcircuit_name pin1 pin2 pin3 ...

...

...

.ends

After doing the conversion with gschemtoxschem.awk you should check your schematics and symbols and make the
necessary corrections.
In particular you should check that schematic pins match symbol pins, regarding pin name and direction. Xschem
standard way is to use ipin.sym, opin.sym, iopin.sch for input, output, inout pins, respectively. Following
image shows the original converted schematic and the hand-modified schematic with the proper pins. Note that
VDD/GND pins have been removed since the LATESN symbol does not have such supply pins.
In spice netlist VDD/GND to the subcircuit is in this particular case passed via net-assign.

 Notes for schematics targeted for spice simulations

309

 Notes for schematics targeted for spice simulations

310

PREV UP NEXT

XSCHEM SKY130 INTEGRATION

To use Xschem with the Google-Skywater 130nm process (here: Sky130) The following items must be followed:

Install Xschem. Follow the Manual Install instructions•

If you install xschem from sources ensure no xschem package is already installed in your linux system. Packaged
xschem versions are too old so you should remove the installed package. The command for ubuntu/Debian
systems is sudo apt-get remove --purge xschem

Install the Magic VLSI layout editor. Instructions here.•
Install ngspice, by cloning the git source repository and building the program.•

clone the source repository into a local ngspice_git directory
git clone https://git.code.sf.net/p/ngspice/ngspice ngspice_git
cd ngspice_git
mkdir release
./autogen.sh
cd release
by default if no --prefix is provided ngspice will install under /usr/local/{bin,share,man,lib}
you can add a --prefix=/home/username to install into your home directory.
../configure --with-x --enable-xspice --disable-debug --enable-cider --with-readline=yes --enable-openmp --enable-osdi
build the program
make
install the program and needed files.
sudo make install

IMPORTANT!!

You need to create the following .spiceinit file in the directory where simulations are run (typically
~/.xschem/simulations) or in your home directory. This file sets some default behavior for reading .lib
files and speeds up loading pdk model files.

set ngbehavior=hsa
set ng_nomodcheck

Install Open_Pdks that will provide among other things all the sky130 PDK data, including standard cells, SPICE
models, layout data, timing information, design rules and provides also also the Xschem symbols of available

•

311

http://opencircuitdesign.com/magic/index.html
https://sourceforge.net/projects/ngspice/
http://opencircuitdesign.com/open_pdks/index.html

silicon primitive devices and the set of locic standard cells built on top of these primitive devices. Instructions are
here.
Please ensure sufficient disk space is available (Open_pdks uses several GB, a lot of space can be recovered after
installation by removing the source files if needed). Also keep in mind that the installation takes considerable
time. The following steps are needed:

fetch the repository with git:
git clone git://opencircuitdesign.com/open_pdks
cd open_pdks
configure the build, a --prefix option can be given to install
in a different place, by default after installation a
/usr/local/share/pdk directory is created if no --prefix is provided.
Below line for example requests installation in my home directory
(/home/schippes/share/pdk):
./configure --enable-sky130-pdk --prefix=/home/schippes
Do the following steps one at a time and ensure no errors are
reported after each step.
./configure --enable-sky130-pdk
make
sudo make install

If you want to install also the gf180mcu pdk replace the above ./configure command with the following:

 ./configure --enable-sky130-pdk --enable-gf180mcu-pdk

At this point the complete PDK has been installed in /usr/local/share/pdk (or
<prefix>/share/pdk if --prefix was provided).
Xschem libraries also have been installed and are located under
<prefix>/share/pdk/sky130A/libs.tech/xschem/ or
<prefix>/share/pdk/sky130B/libs.tech/xschem/.
the sky130B directory contains the ReRAM Sky130 process option in addition to all Sky130A devices.

•

After completing the above steps you can do a test run of xschem and use the Sky130 devices. You need to create
a new empty drectory, create a new xschemrc file with the following content: (source
<prefix>/share/pdk/sky130B/libs.tech/xschem/xschemrc) and run xschem:

•

mkdir test_xschem_sky130
cd test_xschem_sky130
echo 'source /usr/local/share/pdk/sky130B/libs.tech/xschem/xschemrc' > ./xschemrc
xschem

If all went well the following welcome page will be shown. The page contains some example circuits on the left
and shows all the available silicon devices on the right. You can descend into the example circuits on the left by
clicking the symbols (they will turn to grey meaning they are selected) and press the e key or by menu
Edit->Push schematic. You can return to the parent level by pressing Ctrl-e or by menu Edit->Pop.

•

IMPORTANT!!

312

http://opencircuitdesign.com/open_pdks/index.html

You can disable the welcome page by commenting the following line in the xschemrc file:

set XSCHEM_START_WINDOW {sky130_tests/top.sch}

or:

unset XSCHEM_START_WINDOW

PDK_ROOT and PDK environment variables

Xschem (via the xschemrc file) looks for a PDK_ROOT environment variable that points to the installed pdk to use. This
is expecially useful if multiple or different versions of the pdk are installed. If the pdk is installed in
/usr/local/share/pdk PDK_ROOT should be set to /usr/local/share/pdk. For Sky130 another variable
PDK tells the process variant to use (currently sky130A) or sky130B). If PDK is unset the default sky130A will be
used. If no PDK_ROOT variable is defined xschem will look into the following locations and pick the first existing found
in the order listed below:

/usr/share/pdk1.
/usr/local/share/pdk2.
~/share/pdk3.

 PDK_ROOT and PDK environment variables

313

If no pdk is found a warning message is displayed on the xschem launching terminal.

Simulating a circuit with sky130 devices

The best way to quickly set up a simulation with Xschem is to look at some of the provided examples. If you descend into
the test_inv component you see a working circuit ready for simulation.

One line is needed in the spice netlist to load the spice models:

.lib /usr/local/share/pdk/sky130A/libs.tech/ngspice/sky130.lib.spice tt

The exact path depends on the install location of the pdk as explained above. In the picture above the TT_MODELS
component takes care of generating the .lib line in the netlist. the tt at the end of the .lib line is the process corner (tt =
typical n, typical p transistors). You can change the corner to ss, sf, fs, ff to verify your design across process
variations.

You see in the circuit a COMMANDS2 component. This component allows to enter text to specify the simulation to run,
giving simulator commands and options. You place this component by pressing the Insert or i key, browsing into the
standard xschem devices directory and placing code_shown.sym or code.sym into the schematic.

 Simulating a circuit with sky130 devices

314

Once placed in the schematic, you may click the component, press q to edit its attributes, set the Edit attr. listbox on
the right to value and enter the simulator commands to run the simulation. You can give a reference name to this
component by setting the Edit attr. listbox to name and give it a name that will be diplayed in the schematic.
(COMMANDS2 in the example).

 Simulating a circuit with sky130 devices

315

Note in above commands a write test_inv_ngspice.raw command. This example runs simulation with both
Xyce and ngspice so the output raw file is differentiated. If you just plan to use one simulator a good suggestion is to
write a raw file with the same name as the circuit, so write test_inv.raw.

If you select the TT_MODELS component and press q you see the reference to the PDK top library SPICE file. The path
is specified using TCL variables that have been generated by xschem when the pdk installation was looked up. This
allows to have portable schematics, no absolute path is hardcoded in the schematic files.

If everything is set up correctly pressing the Netlist button or hitting the n key will produce a spice netlist of the
circuit. The netlist location is by default set to your home directory: ~/.xschem/simulations

schippes@mazinga:~/x/test_open_pdks$ ls -ltr ~/.xschem/simulations/
...
...
-rw-r--r-- 1 schippes schippes 3266 ott 18 15:26 test_inv.spice

You can then simulate the circuit. Select the simulator to use by clicking menu Simulation->Configure
simulators and tools and selecting (for this example) ngspice

 Simulating a circuit with sky130 devices

316

Press the Simulation button and see the ngspice running in a terminal:

 Simulating a circuit with sky130 devices

317

The default terminal used by xschem to run the simulator is xterm. I strongly suggest you to install xterm (on
ubuntu/debian Linux: sudo apt-get install xterm) since it is a very small package and is not a broken terminal
like most Gnome/KDE/LXDE stuff. You can however use any terminal editor by specifying the one to use in your
xschemrc. If not specified xschem defaults to xterm

set terminal xterm
set terminal gnome-terminal

After completing simulation you can add into the schematic a graph (Simulation->Add waveform graph) and a
waveform reload launcher (Simulation->Add waveform reload launcher). The launcher has a
tclcommand attribute that loads the simulator data file (test_inv.raw) and specifies the type of analysis (op,
dc, ac, tran)

See the manual for details

 Simulating a circuit with sky130 devices

318

 Simulating a circuit with sky130 devices

319

UP

FAQ
I want new instances to get assigned a new unique name automatically.

Add this to your xschemrc file:

set disable_unique_names 0

By default XSCHEM allows instance name (Refdes) duplicates in the schematic. This must be resolved by the user
normally, before exporting any netlist. The Hilight - Highlight duplicate instance names (k key)
menu entry can be used to mark the components that need to be renamed. The Highlight - Rename duplicate
instance names menu entry can be used to automatically rename the last added components so that they have an
unique name. Using the above mentioned xschemrc option will automatically rename any added refdes that clashes with
existing names.

Why do i have to press 'm' to move a component instead of just click and drag?

XSCHEM is intended to handle very big schematics, mouse drags are used to select a rectangular portion of the circuit to
move / stretch, if a mouse click + drag moves components it would be very easy to move things instead of selecting
things. This happens with geda-gschem for example:

320

Here i want to select the R7 and R8 resistors, so i place the mouse close to the upper-left R7 boundary and start dragging,
but since clicking also selects nearby objects the wire gets selected and moving the mouse will move the wire.

 Why do i have to press 'm' to move a component instead of just click and drag?

321

This behavior is considered not acceptable so clicking and dragging will never modify the circuit. Pressing 'm' (for move)
or 'c' (for copy) makes the behavior more predictable and safer. A new user just needs to get used to it.

I start xschem in the background and it freezes. Why?

XSCHEM is usually launched from a terminal, the terminal becomes a TCL shell where commands can be sent to
xschem. For this reason XSCHEM should not be launched in background, as any I/O operation to/from the terminal will
block the program. If you don't plan to use the terminal just start XSCHEM with the -b option: xschem -b &.
XSCHEM will fork itself in the background detaching from the terminal.

Using Xschem (also for skywater-pdk users): a checklist in case of problems:

Xschem by itself (as well as ngspice and open_pdks) does not require a docker container if you build from sources.•
The whole skywater pdk is in rapid evolution, and so is xschem. Do not use packaged versions of xschem provided by
linux distributions, the xschem version provided is far too old. Same consideration for ngspice. Please build xschem
from sources by cloning from git: git clone git@github.com:StefanSchippers/xschem.git xschem-src, then running
./configure with optional --prefix parameter, see instructions here. In particular please verify you have all the required
packages installed. refer to the install page in the xschem manual.

•

To install xschem and ngspice follow this video, but DO NOT follow this video for skywater spice models installation,
there is a second video for this, the default and highly recommended procedure is to install open_pdks.

•

After installing open_pdks you can run simulations by including the top skywater model file: .lib
/your/path/to/share/pdk/sky130A/libs.tech/ngspice/sky130.lib.spice tt.

•

The recommended way to design and simulate a circuit is to create a new empty directory and copy the open_pdks
provided xschemrc: mkdir my_example ; cp /your/path/to/share/pdk/sky130A/libs.tech/xschem/xschemrc

•

 I start xschem in the background and it freezes. Why?

322

my_example/, then cd into that directory and start xschem.
Xschem writes netlists in a directory defined by the tcl 'netlist_dir' variable. You can change the location by editing the
xschemrc file (locate the 'set netlist_dir' line and change according to your needs). By default the netlist directory is set
to ~/.xschem/simulations. Always verify you have write permissions in the directory you are using for netlist
generation. The spice simulator will be invoked by xschem and will also be running in this directory, so all spice
generated files will also be in this directory.

•

Xschem uses a terminal and an editor to allow editing some files or displaying some content. For this there are two
variables defined in xschemrc: editor and terminal. By default editor is set to 'gvim -f' and terminal is set to 'xterm'. I
suggest to install xterm on your system, it is a very small package and has much less problems than 'modern' terminal
emulators, and verify 'editor' is set to an existing editor installed on the system. Please note that for gvim a -f option is
added to avoid gvim forking in the backgound. If your editor of choice forks itself in the background please provide an
option do avoid doing so. Xschem needs for the editor sub-process to finish before going forward.

•

Xschem is able to produce Spice, Verilog and VHDL netlists, the default open source tools for simulating these are by
default ngspice, icarus verilog and ghdl respectively. If you plan to simulate verilog designs in addition to spice, please
install icarus verilog (i recommend building from git, git clone git://github.com/steveicarus/iverilog.git verilog-src), for
VHDL simulations install ghdl from git, git clone https://github.com/ghdl/ghdl.git ghdl-src. xschem can invoke these
simulator by pressing the 'Simulate' button, this works if the paths for the simulators are correctly configured. To verify
the configuration go to xschem Simulation menu and click 'Configure simulators and tools'. A dialog box appears with
the various command lines xschem uses to invoke the simulator. There is a 'Help' button giving more information. The
Configure simulators and tools dialog box can be used to invoke different simulators, even commercial tools. Xschem
has been used with HSPICE, cadence NCSIM digital simulator and Mentor Modelsim.

•

For ngspice specific issues please read the manual! it has lot of very useful information.•
Please note that skywater-pdk has a .option scale=1.0u in the spice files, that means that all transistor dimensions you
give (L=0.18, W=2) will be scaled down by 1e6. so a '1' means 1 micro-meter. DO not use l=0.18u, since that will
reduce to 0.18 pico-meters!!

•

 Using Xschem (also for skywater-pdk users): a checklist in case of problems:

323

UP

XSCHEM GRAPHICS PERFORMANCE
CONSIDERATIONS

For 2D graphic workloads software rendering on framebuffer device is the fastest option on almost all laptops i have
tested xschem on. The only exception is the little Samsung N220 due to the slow and tiny Atom N450 CPU.
Framebuffer graphics is also the most precise and reliable since the X11 specification has exact rules for
pixelization/rasterization of primitives.
All drawings are thus exactly identical down to the pixels on any machine using fbdev.
Following table summarizes the test times for a xschem BIST routine, doing lot of graphic (among other) operations.

HOST CPU GPU X11 Driver Test time [s]
===
Asus F556U Intel core i7-7500U Intel HD 620 fbdev 19.8 -best-
Asus F556U Intel core i7-7500U Intel HD 620 modesetting 28.7
Asus F556U Intel core i7-7500U Intel HD 620 intel 20.6

Samsung N220 Intel Atom N450 Integrated N450 fbdev 96.5
Samsung N220 Intel Atom N450 Integrated N450 modesetting N/A
Samsung N220 Intel Atom N450 Integrated N450 intel 95.0 -best-

Samsung R540 Intel Core i3 M 380 AMD/ATI Radeon HD 54xx fbdev 31.9 -best-
Samsung R540 Intel Core i3 M 380 AMD/ATI Radeon HD 54xx modesetting 64.3
Samsung R540 Intel Core i3 M 380 AMD/ATI Radeon HD 54xx radeon 32.3

HP Pavilion DV6000 Intel Core Duo T5450 NVIDIA GeForce 8400M GS fbdev 41.5 -best-
HP Pavilion DV6000 Intel Core Duo T5450 NVIDIA GeForce 8400M GS modesetting 216.1
HP Pavilion DV6000 Intel Core Duo T5450 NVIDIA GeForce 8400M GS nouveau 41.6

Following video shows the testing in action (OS: Devuan/testing, Arch: amd64):

Your browser does not support the video tag.

324

https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/performance.mp4

	XSCHEM TUTORIAL
	XSCHEM TUTORIAL
	XSCHEM TUTORIAL
	XSCHEM TUTORIAL
	XSCHEM ELEMENTS
	SYMBOLS
	XSCHEM PROPERTIES
	COMPONENT INSTANTIATION
	SYMBOL PROPERTY SYNTAX
	COMPONENT PROPERTY SYNTAX
	CREATING A CIRCUIT SCHEMATIC
	CREATING A CIRCUIT SCHEMATIC
	COMPONENT PARAMETERS
	CREATING A PARAMETRIC SUBCIRCUIT
	EDITOR COMMANDS
	NETLISTING
	NET PROBES
	SIMULATION
	GRAPHS
	DEVELOPER INFO
	XSCHEM REMOTE CONTROL
	XSCHEM TUTORIAL
	XSCHEM TUTORIAL
	XSCHEM TUTORIAL: INSTANCE BASED SELECTION OF SYMBOL IMPLEMENTATION
	XSCHEM TUTORIAL: SYMBOL AND SCHEMATIC GENERATORS
	XSCHEM TUTORIAL: CREATE A SYMBOL AND USE AN EXISTING NETLIST
	XSCHEM TUTORIAL: CREATE SYMBOL
	XSCHEM TUTORIAL: CREATE SYMBOL
	XSCHEM TUTORIAL: Bussed nets - Vectors of instances
	XSCHEM TUTORIAL: Backannotation of ngspice simulation data
	XSCHEM TUTORIAL: Use symgen.awk to create symbols from 'djboxsym' compatible text files
	XSCHEM TUTORIAL: Translate GEDA gschem/lepton-schematic schematics and symbols to xschem
	XSCHEM SKY130 INTEGRATION
	XSCHEM TUTORIAL
	XSCHEM GRAPHICS PERFORMANCE CONSIDERATIONS

